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ABSTRACT	

	 Privacy-preserving	visual	recognition	is	an	important	area	of	research	that	is	

gaining	momentum	in	the	field	of	computer	vision.	In	a	production	environment,	it	

is	critical	to	have	neural	network	models	learn	continually	from	user	data.	However,	

sharing	raw	user	data	with	a	server	is	less	desirable	from	a	regulatory,	security	and	

privacy	perspective.	Federated	learning	addresses	the	problem	of	privacy-

preserving	visual	recognition.	More	specifically,	we	closely	examine	and	dissect	a	

framework	known	as	Dual	User	Adaptation	(DUA)	presented	by	Lange	et	al.	at	CVPR	

2020,	due	to	its	novel	idea	of	bringing	about	user-adaptation	on	both	the	server-side	

and	user	device	side.	Data	in	the	server	and	user	device	is	predefined	into	a	series	of	

tasks	prior	to	training	and	testing.	However,	since	user	data	is	constantly	evolving,	

it’s	important	to	see	how	DUA	performs	on	unseen	data	or	tasks.	A	few	

implementations	are	also	executed	to	see	if	the	performance	of	the	DUA	model	can	

be	improved	on	unseen	data.	In	addition,	two	other	federated	learning	frameworks	

are	implemented	to	compare	how	it	performs	with	DUA.	Through	this	research	we	

show	that	retraining	the	classifier	layer	of	the	merged	model	with	all	data	categories	

greatly	improves	the	performance	for	real-world	implementation	of	DUA.	

Keywords	–	Privacy-preserving,	Federated	Learning,	Dual	User-Adaptation,	

FedAvg,	FedProx	
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I. INTRODUCTION	

The	ubiquity	of	smart	devices,	such	as	security	cameras,	phones,	and	watches,	in	

today’s	technology-driven	world	has	made	people’s	lives	convenient.	For	example,	

lifestyle	and	fitness	apps	have	been	incredibly	adopted	during	the	COVID-19	pandemic	

lockdowns	[1].	These	apps	commonly	rely	on	deep	learning	models	as	their	primary	

engines.	The	availability	of	large	high-quality	datasets	is	critical	to	train	deep	learning	

models,	and	in	a	production	environment,	it	is	especially	important	to	have	the	model	

continually	learn	new	tasks	from	streams	of	user	data	to	maintain	the	relevancy	and	

performance	of	the	model	and	the	app	[2].	Additionally,	user	data	could	potentially	

reduce	huge	investments	that	go	into	building	a	manually	curated	and	labeled	dataset	

for	training	models,	and	this	is	especially	useful	in	scenarios	where	most	of	the	data	is	

housed	within	data	islands	[3].	However,	it	is	not	always	in	the	interest	of	the	user	to	

send	raw	user	data	to	a	central	server	due	to	privacy	concerns	and	vulnerability	of	data	

leaks	due	to	cyberattacks	[4].	Thus,	development	of	privacy-preserving	frameworks	for	

continual	and	user-personalized	learning	is	of	utmost	importance.	

Privacy-preserving	continual	learning	was	popularized	in	a	large	scale	by	the	

introduction	of	federated	learning	into	Google’s	Android	keyboard	in	2017	[5].	Since	

then,	numerous	frameworks	have	been	proposed	and	deployed,	with	some	designed	for	

domain-specific	applications	[6].	Federated	learning	frameworks	can	be	broadly	

classified	into	two	categories	based	on	whether	a	central	server	with	significant	

compute	capability	is	used	as	a	manager	to	collect	deidentified	user	data	(in	the	form	of	
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prediction	target	probabilities	or	model	weights)	and	perform	aggregation	and	training.	

A	federated	learning	framework	with	such	a	powerful	central	server	is	useful	while	

developing	models	that	need	to	be	deployed	on	low-powered	devices	and	for	

comparatively	less-sensitive	user	data.	However,	a	central	server	can	be	less	attractive	

to	users	when	the	data	involves	sensitive	information	such	as	health	records	or	

financial	information.	In	such	cases,	a	decentralized	federated	learning	framework	is	

more	suitable.	Recent	examples	of	centralized	federated	learning	frameworks	include	

FedAvg	[7],	FedSVRG	[8],	Agnostic	FL	[9]	whereas	decentralized	federated	learning	

frameworks	include	SimFL	[10],	Swarm	Learning	[11],	and	Galaxy	Federated	Learning	

[12].	

The	Dual	User	Adaptation	(DUA)	framework	was	a	solution	developed	by	Lange	et	

al.	that	closely	resembles	federated	learning	[13].	The	authors	describe	a	highly	scalable	

continual	learning	centralized	federated	learning	framework	that	1)	avoids	sending	raw	

user	data	to	the	central	server,	and	2)	returns	a	final	model	that	is	user-personalized	

and	not	just	a	server	model	that	learns	general	trends	from	data	obtained	from	a	pool	of	

users	[13].	To	protect	users’	privacy,	the	authors	took	an	unsupervised	approach	to	

personalize	models	with	unlabeled	local	user	images.	The	authors	tested	the	DUA	

framework	for	image	classification	application	on	the	MNIST	[19]	and	SVHN	[20]	and	

MIT	indoor	scenes	[21]	datasets.	However,	the	DUA	framework	is	domain-agnostic	and	

should,	in	theory,	be	suitable	for	a	wide	range	of	applications.	Our	research	builds	upon	

the	DUA	framework	by	extending	its	capability	to	deal	with	unseen	user	data	through	



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

6 
 
 
 
 

the	following	steps:	(1)	a	thorough	investigation	of	the	DUA	framework,	(2)	evaluating	

server	trained	(unmerged)	and	merged	models	on	unseen	data,	(3)	implementing	

different	model	configurations	to	train	and	test	merged	models	and	evaluate	which	one	

performed	the	best	on	unseen	data.	Through	this	research	we	show	that	retraining	the	

classifier	layer	of	the	merged	model	with	all	data	categories	greatly	improves	the	

performance	for	real-world	implementation	of	DUA.	

The	paper	is	structured	as	follows.	Section	II	provides	an	overview	of	related	work	

done	on	privacy-preserving	visual	recognition.	Section	III	provides	background	

information	on	the	DUA	framework	in	detail.	Subsequently,	Section	IV	provides	a	

description	of	the	research	objective.	Section	V	provides	a	review	of	the	DUA	

framework.	Section	VI	provides	information	on	the	preliminary	research.	Section	VII	

provides	information	on	the	methodology	that	was	taken	to	meet	the	research	

objective.		Section	VIII	describes	the	evaluation	results	of	the	experiments	that	were	

executed.	Lastly,	Section	IX	recounts	this	research	and	sets	up	the	building	blocks	for	

future	work.	This	report	also	includes	a	supplementary	section	that	provides	additional	

information	on	this	research	project.	

	

II. RELATED	WORK	

Privacy-preserving	visual	recognition	has	become	an	important	area	of	research	in	

the	field	of	computer	vision	as	more	and	more	deep	neural	network	models	are	being	

trained	on	private,	sensitive	data.	Many	researchers	have	and	continue	to	explore	this	
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area	of	research.	As	a	result,	varied	solutions	have	been	developed	to	tackle	the	

problem	of	privacy-preserving	visual	recognition.	The	adversarial	training	framework	

proposed	by	Wu	et	al.	[14]	is	an	example	of	one	such	solution.	Similarly,	Papernot	et	al.,	

developed	a	framework	known	as	Private	Aggregation	Teacher	Ensembles	(PATE)	[29].	

Zhu	et	al.	used	PATE	as	the	foundation	for	their	research	by	focusing	on	the	most	

important	parameter	in	PATE	and	proposed	a	different	algorithm	[30].	FedAvg	[7]	and	

FedProx	[15]	are	two	federated	learning	frameworks	that	also	address	this	issue.		

Adversarial	Training	Framework:	The	motivation	for	the	study	conducted	by	Wu	et	

al.	came	from	a	growing	increase	of	privacy	concern	due	to	the	prevalence	of	smart	

surveillance	systems	[14].	Videos	and	images	captured	by	these	smart	devices	had	to	be	

uploaded	to	a	centralized	cloud	server	to	perform	backend	analytics	to	provide	

enhanced	and	tailored	user	experiences	[14].	Cryptographic	solutions	were	not	

sufficient	to	prevent	attackers	from	accessing	this	data.	In	addition,	users’	privacy	was	

compromised	when	authorized	analysts	mined	the	data	to	gather	important	

information	[14].	As	the	first	step	towards	solving	the	dilemma	of	providing	user	

convenience	while	still	protecting	the	user’s	privacy,	Wu	et	al.	incorporated	the	concept	

of	differential	privacy	in	the	adversarial	training	framework	[14].	The	goal	of	the	

adversarial	training	framework	was	to	optimize	target	task	performance	without	

compromising	users’	data	by	learning	an	“active	degradation”	or	transform	that	can	be	

applied	to	raw	visual	data	[14].	

1) Brief	Overview	of	Differential	Privacy:	Differential	privacy	is	a	technique	that	has	 
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been	employed	by	many	businesses	to	keep	user	data	private	while	collecting	and	

analyzing	user	data	to	improve	user	experience.	This	technique	involves	applying	

statistical	functions	to	data	to	anonymize	the	data	for	the	purpose	of	protecting	the	

data	[16].	Applying	statistical	functions	to	data	inserts	random	noise	to	the	data	

making	it	more	secure	than	if	the	data	was	simply	sent	as	a	response	to	a	query	in	

its	raw,	original	format.	However,	one	of	the	challenges	that	is	present	in	differential	

privacy	is	knowing	how	much	noise	to	add	to	data	[16].	In	other	words,	the	amount	

of	noise	is	a	trade-off.	The	more	noise	that	is	added	to	data,	the	more	anonymous	

that	data	becomes,	but	also	makes	the	data	less	useful.	One	of	the	ways	in	which	

differentially	private	systems	try	to	enforce	a	privacy	guarantee	is	by	enforcing	a	

maximum	privacy	loss,	known	as	the	privacy	budget.	

2) Technical	Approach/Methodology:	Fig.	1	represents	the	model	architecture	

diagram	of	the	proposed	framework.	

		

	

	

	

	

	

	

	
Figure	1:	Adversarial	Training	Framework	[taken	from	Wu	et	al.	(2020)]	

 
Equation	1:	Mathematical	Equation	of	Adversarial	Training	FrameworkFigure	1:	

Adversarial	Training	Framework	[taken	from	Wu	et	al.	(2020)]	
 

Equation	1:	Mathematical	Equation	of	Adversarial	Training	Framework		
[taken	from	Wu	et	al.	(2020)] 

 
Figure	3:	Federated	Learning	Frameworks	–	FedAvg	[McMahan	et	al.]	&	FedProx	[Li	et	
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The	raw	video	data,	X,	is	first	fed	into	the	model	and	passes	through	the	active	

degradation	function	fd	producing	the	anonymized	video	fd(X).	The	anonymized	

video	is	passed	to	two	models,	the	target	task	model,	fT(fd(X)),	and	privacy	

prediction	model,	fb(fd(X)),	simultaneously	during	training.	The	target	task	

model,	fT(fd(X)),	was	implemented	to	predict	the	target	task	it	was	trained	on.	

For	example,	in	this	study,	the	target	task	was	classifying	human	action.	The	

privacy	prediction	model,	fb(fd(X)),	was	implemented	to	evaluate	how	well	the	

model	performs	on	identifying	private	information	from	the	data.		The	output	of	

the	target	task	model,	fT(fd(X)),	and	labels	of	training	data,	YT,	are	passed	to	the	

target	task	cost	function	LT	to	get	a	measure	of	how	well	the	model	performed	on	

the	transformed	raw	data.	The	output	of	the	privacy	prediction	model,	fb(fd(X)),	

and	labels	of	“privacy-related	annotations”	[14],	YB,	are	passed	to	the	privacy	

budget	cost	function,	LB,	to	get	a	measure	of	how	well	privacy	has	been	

preserved	[14].	The	mathematical	equation	of	this	framework	can	be	found	in	

Equation	1.	In	this	equation,	the	weight	parameter	is	represented	by	γ	and	P	

represents	the	family	of	privacy	prediction	functions.	Based	on	Fig.	1	and	

Equation	1,	the	entire	model	is	trained	end-to-end	under	the	hybrid	loss	of	LT	

Equation	1:	Mathematical	Equation	of	Adversarial	Training	Framework		
[taken	from	Wu	et	al.	(2020)] 

 
Figure	3:	Federated	Learning	Frameworks	–	FedAvg	[McMahan	et	al.]	&	FedProx	[Li	et	

al.]Equation	1:	Mathematical	Equation	of	Adversarial	Training	Framework		
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and	LB	with	the	intention	of	maximizing	target	task	performance	while	

minimizing	privacy	breach.	

Private	k-Nearest	Neighbors:	Many	machine	learning	algorithms	have	been	trained	

using	private,	sensitive	data	so	they	can	be	used	to	produce	applications	best	tailored	to	

its	users.	However,	there	is	no	guarantee	that	the	trained	data	will	remain	private.	In	

fact,	overfitting	is	a	prominent	issue	for	many	algorithms	[29].	This	implicit	

memorization	enables	attackers	to	gain	unauthorized	access	to	private	information	that	

can	lead	to	unwanted	situations.	

According	to	Papernot	et	al.,	there	is	a	direct	and	indirect	way	to	attack	machine	

learning	models.	The	direct	approach	is	by	“analyzing	model	parameters	[29]”	whereas	

the	indirect	approach	is	to	repeatedly	query	models	to	gather	as	much	data	as	possible.	

To	protect	the	privacy	of	training	data,	Papernot	et	al.,	developed	a	structured	

framework	based	off	the	idea	of	teacher	student	transfer	technique	known	as	Private	

Aggregation	Teacher	Ensembles	(PATE)	[29].	In	this	framework,	as	seen	in	Fig.	2,	

sensitive	data	is	divided	into	a	few	disjoint	subsets	which	are	fed	into	teacher	models	to	

train	them.	The	resulting	output	of	the	teacher	models	and	unlabeled	data	is	then	used	

to	train	a	student	model.	With	this	approach,	even	if	attackers	are	aware	of	the	student	

model’s	internal	parameters,	the	privacy	of	the	training	data	will	be	protected	since	the	

student	model	won’t	depend	on	a	single	training	data	point	[29].	
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The	key	idea	behind	PATE	is	to	guarantee	the	privacy	of	the	data	by	limiting	the	

access	students	have	to	their	teachers.	For	this	purpose,	Papernot	et	al.	adopted	

generative	adversarial	networks	(GANs)	to	speed	up	the	knowledge	transfer	between	

student	and	teacher	[29].	Zhu	et	al.	observed	that	the	parameter	k,	which	represents	the	

number	of	disjoint	teachers,	is	the	most	important	parameter	in	PATE	[30].	In	addition,	

according	to	Zhu	et	al.,	if	the	teacher	model	is	a	deep	neural	network	model,	then	large	

amounts	of	labeled	data	is	required	to	obtain	high	performance	[30].	However,	

obtaining	labeled	data	is	an	expensive	task	and	choosing	a	large	enough	value	for	k	

would	be	insufficient	since	it	will	only	generate	a	very	small	subset	of	data.	To	tackle	

this	problem,	Zhu	et	al.	proposed	an	algorithm	called	Private	k-Nearest	Neighbors	

(Private	kNN)	[30].	

Federated	Averaging:	Federated	learning	is	a	term	developed	by	McMahan	et	al.	as	

part	of	their	research	in	providing	a	decentralized	approach	to	training	models	by	

using	user	data	without	compromising	the	privacy	of	the	data	[7].	In	a	traditional	

setting,	user	data	can	be	sent	to	a	central	server	to	train	models	which	in	turn	will	

Figure	2:	PATE	[taken	from	Papernot	et	al.	(2017)]	
 
Figure	3:	Federated	Learning	Frameworks	–	FedAvg	[McMahan	et	al.]	&	FedProx	[Li	et	al.]	
 
Figure	4:	Unsupervised	Model	Personalization	[adapted	from	Lange	et	al	(2020)]Figure	3:	
Federated	Learning	Frameworks	–	FedAvg	[McMahan	et	al.]	&	FedProx	[Li	et	al.]Figure	2:	

PATE	[taken	from	Papernot	et	al.	(2017)]	
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produce	high	performing	and	user	personalized	models.	However,	this	poses	a	threat	

to	the	privacy	of	the	user	data.	In	federated	learning,	a	single	server	model	is	shared	

among	all	user	devices	where	the	model	gets	trained	on	local	user	data	[7].	After	the	

training	is	complete,	the	locally	trained	models	are	sent	back	to	the	server	and	

aggregated	into	a	global	model,	which	is	again	sent	back	to	the	user	device	for	further	

training	and	this	cycle	is	repeated	continuously.		

The	Federated	Averaging	(FedAvg)	algorithm	was	developed	by	McMahan	et	al.	as	

part	of	their	research	work	in	federated	learning	[7].	A	diagram	of	the	FedAvg	algorithm	

can	be	seen	in	Fig.	3.	As	seen	in	Fig.	3,	this	algorithm	assumes	a	setup	of	a	central	server	

and	a	total	of	K	users	interacting	with	the	central	server	[7].	In	addition,	each	user	j	has	

a	fixed	local	dataset	Pj.	To	begin	with,	the	central	server	initializes	the	weights	of	the	

shared	global	model	randomly.	Next,	a	random	fraction	C	of	the	total	number	of	users	K	

is	taken	and	the	global	model	is	sent	out	to	each	of	these	C	users.	Once	each	user	has	

received	the	global	model	parameters,	each	selected	user	performs	training	on	local	

data	and	sends	the	updated	model	parameters	back	to	the	server.	After	the	server	

receives	the	updates,	the	global	model	gets	updated	by	averaging	all	the	user	updates.	

This	process	continues	for	multiple	rounds.	
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FedProx:	Similar	to	FedAvg	[7],	FedProx	is	another	solution	for	federated	

learning	[15].	Federated	learning	comes	with	its	own	set	of	challenges.	The	first	

challenge	is	associated	with	the	variable	of	system	architecture	in	user	devices	[15].	

For	example,	there	is	no	guarantee	that	the	devices	that	are	connected	to	a	central	

server	are	going	to	be	composed	of	the	same	system	architecture.	This	is	an	

important	attribute	to	keep	in	mind	when	developing	a	federated	learning	solution.	

The	second	challenge	is	related	to	the	data	distributed	across	multiple	user	devices	

[15].	The	data	contained	in	user	devices	can	vary	greatly.	There	is	a	high	probability	

that	data	across	multiple	user	devices	are	non-identical.	Li	et	al	developed	FedProx	

to	address	these	key	challenges	[15].			

Figure	3:	Federated	Learning	Frameworks	–	FedAvg	[McMahan	et	al.]	&	FedProx	[Li	et	al.]	
 
Figure	4:	Unsupervised	Model	Personalization	[adapted	from	Lange	et	al	(2020)]Figure	3:	

Federated	Learning	Frameworks	–	FedAvg	[McMahan	et	al.]	&	FedProx	[Li	et	al.]	
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FedProx	[15]	is	closely	related	to	FedAvg	[7].	Fig.	3	is	also	adapted	to	FedProx.	Just	

like	FedAvg,	a	fraction	of	the	total	number	of	devices	are	selected	at	random.	The	server	

sends	the	global	model	to	each	of	the	devices	in	the	subset.	Training	occurs	on	the	local	

data	and	the	devices	send	back	the	updates	to	the	server	where	everything	is	averaged	

into	the	global	model.	The	difference	between	FedProx	and	FedAvg	is	that	in	FedProx,	

each	device	does	a	different	amount	of	work	depending	on	its	system	architecture	to	

account	for	system	heterogeneity.	

	

III. BACKGROUND	INFORMATION	

The	Dual	User	Adaptation	(DUA)	framework	was	developed	by	Lange	et	al.	as	an	

innovative	solution	to	the	problem	of	privacy-preserving	visual	recognition	[13].	

Closely	resembling	federated	learning,	this	framework	aims	to	preserve	the	privacy	of	

raw	user	data	while	still	delivering	personalized	models	to	the	user.		

In	the	DUA	framework,	unlike	in	traditional	federated	learning,	user-personalization	

occurs	both	on	the	server	and	user	device,	which	is	defined	by	two	adaptation	

functions,	ψ	and	ϕ,	respectively.	The	DUA	framework	can	be	broken	down	into	two	

phases.	Server	S	contains	a	set	of	N	task-specific	models,	M	=	{M1,	M2,	...,	MN},	as	seen	on	

the	right-hand	side	of	Fig.	4.	
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In	the	first	phase,	these	models	are	trained	sequentially	using	task	incremental	learning	

from	the	labeled	data	dS	[13].	Each	model	in	M	is	dependent	upon	the	current	task	data	

and	previous	task	model,	with	each	subsequent	model	having	its	weights	initialized	at	

the	start	of	training	to	the	weights	of	the	model	for	the	previous	task.	Since	the	DUA	

framework	is	designed	for	continual	learning,	the	server	learns	a	new	task	Tn	with	

corresponding	new	task	data	Dn	after	which	Dn	is	discarded	and	only	the	model	Mn	is	

kept	[13].	When	a	model	is	trained	sequentially,	there	is	a	risk	that	the	model	may	

forget	the	information	it	last	learned	on	the	previous	task	it	was	trained	for	when	the	

Figure	4:	Unsupervised	Model	Personalization	[adapted	from	Lange	et	al	(2020)]	
 

Figure	4:	Unsupervised	Model	Personalization	[adapted	from	Lange	et	al	(2020)]	
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model	is	learning	a	new	task.	This	risk	is	coined	the	term	catastrophic	forgetting	[17].	

To	address	the	issue	of	catastrophic	forgetting,	the	server	adopts	a	model	adaptation	

strategy	known	as	Incremental	Moment	Matching	(IMM)	to	train	[17].	In	statistics,	

moments	can	be	described	as	a	robust	way	of	describing	a	dataset.	There	are	varying	

degrees	of	moments.	For	instance,	the	first	moment	is	the	mean	of	a	dataset,	the	second	

moment	is	the	average	squared	distance	from	0	of	a	dataset,	and	the	third	moment	is	

the	variance	of	a	dataset.	Combining	Bayesian	neural	networks	and	moments	in	

statistics,	IMM	resolves	the	issue	of	catastrophic	forgetting.	IMM	is	a	method	developed	

by	Lee	et	al.	that	uses	Gaussian	posterior	to	train	sequential	models	through	the	method	

of	weight	transfer	[17].	Mean-IMM	is	another	function	of	IMM	that	takes	the	average	of	

the	parameters	of	two	or	more	models	and	is	utilized	in	the	merging	process	[17].	In	the	

second	phase,	the	task	specific	models	are	used	to	gather	priors,	or	importance	weights,	

from	user	data.	Then,	both	task	specific	models	and	importance	weights	are	aggregated	

to	a	model	using	the	aggregation	function,	χ	.	As	seen	on	the	bottom	left-hand	side	of	

Fig.	4,	user	l	receives	^Ml	from	the	server	S	where	the	local	adaptation	function	𝜙	is	

applied	to	the	model	to	get	a	final	model	*Ml	=	𝜙(dl,	^Ml).	Since	the	user	devices	are	

resource-limited,	training	procedures	on	these	devices	have	been	restricted	to	those	

requiring	very	low	computational	demands.	

	

	

	



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

17 
 
 
 
 

									IV.											RESEARCH	OBJECTIVE	

 
The	differentiating	factor	between	the	DUA	framework	and	other	federated	learning	

frameworks	is	that	the	DUA	framework	considers	user-adaptation	both	on	the	server	

side	and	user	device	side.	After	thoroughly	examining	the	DUA	framework	and	the	

training	process	provided	by	the	authors	[13],	I’ve	identified	several	shortcomings	

which	I	present	in	detail	in	Section	V.		For	instance,	it	was	found	that	the	same	dataset	

was	used	to	train	the	models	in	the	server	and	served	as	user	data.	Hence,	when	

important	features	were	extracted	from	the	user	data	and	sent	to	the	server	to	merge	

models,	it	doesn’t	ensure	that	the	models	work	for	unseen	data.	In	this	research,	unseen	

data	is	defined	as	data	on	the	user	device	that	constitutes	a	task	or	set	of	tasks	that	were	

not	used	for	model	training	on	the	server	side.	The	purpose	of	this	research	is	to	

address	this	issue	and	improve	the	performance	of	merged	models.	In	addition,	while	

there	were	two	experiments	performed	on	the	MIT	indoor	scenes	dataset	[21],	there	

was	no	baseline	to	compare	the	DUA	with	in	the	original	publication.	For	this	purpose,	

FedAvg	[7]	and	FedProx	[15]	were	implemented	to	check	how	well	DUA	performed	on	

this	task.		

A. Challenges	and	Innovative	Aspects	of	the	Research 

● The	main	challenge	of	this	research	is	identifying	the	pitfalls	of	the	DUA	

framework	and	introducing	improvements	to	make	it	robust	for	unseen	data.	

The	DUA	framework	incorporates	many	complex	concepts:	

o Catastrophic	Forgetting	[17]	
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o Incremental	Moment	Matching	(IMM)	[17]	

o Bayesian	Inference	[23]	

o Prior	and	Posterior	Distribution	[23]	

o Gaussian	Distribution	[24]	

o Task	Incremental	Learning	[25]	

o Continual	Learning	[26]	

o Fisher	Information	[27]	

o Memory	Aware	Synapses	[22]	

	

V. REVIEW	OF	DUA	FRAMEWORK	

A. Experiments	Conducted	on	DUA	Framework	

Unsupervised	adaptation,	scalability	and	privacy	preserving	are	the	three	key	

features	of	the	DUA	framework	[13].	To	demonstrate	these	three	key	features,	a	set	of	

three	experiments	were	performed	by	Lange	et	al.	on	image	classification	[13].	The	first	

experiment	was	performed	on	the	MNIST	[19]	and	SVHN	[20]	datasets.	The	last	two	

experiments	were	performed	on	the	MIT	Indoor	Scenes	dataset	[21].	

1) Numbers	Experiment:	The	first	experiment	involved	incrementally	training	a	

	Multilayer	Perceptron	(MLP)	model,	which	consisted	of	2	hidden	layers	of	100	units	

each	on	a	series	of	tasks	defined	by	a	combination	of	the	MNIST	and	SVHN	datasets	

[13].	Both	these	datasets	are	composed	of	digits	that	range	from	0	to	9.	Taking	this	

into	account,	a	total	of	5	tasks	were	defined	for	this	experiment	and	each	task	is	
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composed	of	two	digits.	Each	task	is	responsible	for	classifying	the	specified	subset	

of	digits	it	contains.	Task	1	consists	of	digits	0	and	1,	task	2	consists	of	digits	2	and	3,	

task	3	consists	of	digits	4	and	5,	task	4	consists	of	digits	6	and	7,	and	lastly,	task	5	

consists	of	digits	8	and	9.	Subsequently,	each	task	has	corresponding	images	from	

both	MNIST	and	SVHN	datasets.	For	example,	task	1	has	images	from	both	MNIST	

and	SVHN	that	contain	0	and	1.	A	clear	picture	of	the	defined	tasks	can	be	found	in	

Table	I.	

	

TASKS	 SUBSET	OF	DIGITS	
1	 0,	1	
2	 2,	3	
3	 4,	5	
4	 6,	7	
5	 8,	9	

	

In	this	experiment,	the	training	dataset	from	both	MNIST	and	SVHN	was	

parsed	into	the	defined	tasks	in	Table	I	and	used	for	training	the	models	

sequentially	on	server	S,	based	on	the	setup	showcased	in	Fig.	4.	To	address	the	

feature	of	scalability,	this	experiment	considered	two	users.	The	first	user	prefers	

SVHN,	therefore,	the	data	in	this	user	device	only	contains	the	testing	dataset	from	

SVHN	parsed	into	the	same	tasks	as	defined	in	Table	I.	The	second	user	prefers	

MNIST,	therefore,	the	data	in	this	user	device	only	contains	the	testing	dataset	from	

MNIST	parsed	into	the	same	tasks	as	defined	in	Table	I.		

TABLE	I:	Tasks	of	Numbers	Experiments 
 

Figure 5: Multilayer Perceptron (MLP) 
Model with 2 hidden layers of 100 nodes 

each and 10 output nodesTABLE	I:	Tasks	
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Figure 6: Multilayer Perceptron (MLP) 
Model with 2 hidden layers of 100 nodes 
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a) Server	Training	of	Models	for	all	Tasks:	Complying	with	the	DUA	framework,	

these	tasks	are	trained	incrementally	on	the	server	using	IMM	[13].	This	

experiment	starts	with	a	MLP	model	with	10	output	nodes	as	the	base	model,	

as	shown	in	Fig.	5.	 

	

	

	

	

	

	

	

	

	

	

	

	

It’s	important	to	note	that	task	1	is	trained	differently	than	all	subsequent	

tasks	because	the	base	model	has	not	been	trained	on	any	data	yet.	Since	task	

1	is	only	expecting	two	outputs,	[0,1],	the	last	layer,	also	known	as	the	

classifier	layer	or	head	layer,	of	the	base	MLP	model	is	replaced	with	2	output	

nodes	instead	of	10,	as	shown	in	Fig.	6.		

Figure	5:	Multilayer	Perceptron	(MLP)	Model	with	2	hidden	layers	of	100	nodes	each	
and	10	output	nodes	

 
Figure	6:	Multilayer	Perceptron	(MLP)	Model	with	2	hidden	layers	of	100	nodes	each	
and	2	output	nodesFigure	5:	Multilayer	Perceptron	(MLP)	Model	with	2	hidden	layers	

of	100	nodes	each	and	10	output	nodes	
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and	2	output	nodes	
 
Figure	7:	Structure	of	model,	M1,	trained	on	task	1Figure	6:	Multilayer	Perceptron	
(MLP)	Model	with	2	hidden	layers	of	100	nodes	each	and	2	output	nodesFigure	5:	
Multilayer	Perceptron	(MLP)	Model	with	2	hidden	layers	of	100	nodes	each	and	10	

output	nodes	
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of	100	nodes	each	and	10	output	nodes	
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After	replacing	the	head	layer,	training	begins	by	feeding	the	model	with	

mini	batches	of	data,	computing	loss	using	the	cross-entropy	loss	function	

and	using	Stochastic	Gradient	Descent	(SGD)	as	the	optimizer	to	compute	the	

gradient	of	the	loss	with	respect	to	all	trainable	parameters.	Both	the	training	

phase	and	validation	phase	is	carried	off	in	each	epoch	for	a	total	of	10	

epochs	[13].	At	the	end,	the	model	with	the	best	accuracy	gets	saved.	Fig.	7	

showcases	the	structure	of	the	model,	M1,	that	was	trained	on	task	1.	As	

shown	in	Fig.	7,	M1	contains	4	layers,	and	each	layer	is	indicated	by	its	name	

Figure	6:	Multilayer	Perceptron	(MLP)	Model	with	2	hidden	layers	of	100	nodes	each	
and	2	output	nodes	
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Figure	7:	Structure	of	model,	M1,	trained	on	task	1	
 
Figure	8:	Structure	of	model,	M2,	trained	on	task	2Figure	7:	Structure	of	model,	M1,	
trained	on	task	1Figure	6:	Multilayer	Perceptron	(MLP)	Model	with	2	hidden	layers	of	

100	nodes	each	and	2	output	nodes	
 
Figure	7:	Structure	of	model,	M1,	trained	on	task	1Figure	6:	Multilayer	Perceptron	

(MLP)	Model	with	2	hidden	layers	of	100	nodes	each	and	2	output	nodes	
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and	weight	and	bias	values	it	holds.	For	example,	“classifier.0.weight”	is	the	

name	of	the	first	layer	and	“v.0.w”	represents	the	weight	values	that	the	first	

layer	contains.	Similarly,	“v.0.b”	represents	the	bias	value	that	the	first	layer	

contains.	The	rest	of	the	layers	are	described	in	the	same	manner.				

	

	

	

	

	

	

	

	

Task	2	is	trained	differently	than	task	1.	The	weights	of	the	model	trained	

on	task	1	will	be	transferred	to	the	model	that	is	going	to	be	used	to	train	

task	2.	Since	we	want	to	preserve	the	model	for	task	1	and	train	the	classifier	

for	the	new	task,	we	replace	the	head	layer	with	2	new	units	since	the	

outputs	of	task	2	are	[2,	3].	After	replacing	the	head	layer,	the	model	is	

initialized	with	regularized	parameters	for	each	layer	by	setting	a	few	

attributes,	that	have	not	been	initialized,	to	0.	The	attributes	of	the	

regularized	parameters	are	w,	omega,	init_val,	name,	and	lambda.	The	

structure	of	the	model,	M2,	trained	on	task	2	can	be	seen	in	Fig.	8.	As	noted	in	

Figure	7:	Structure	of	model,	M1,	trained	on	task	1	
 
Figure	8:	Structure	of	model,	M2,	trained	on	task	2Figure	7:	Structure	of	model,	M1,	

trained	on	task	1	
 

Figure	8:	Structure	of	model,	M2,	trained	on	task	2	
 
Figure	8:	Structure	of	model,	M2,	trained	on	task	2Figure	7:	Structure	of	model,	M1,	

trained	on	task	1	
 
Figure	8:	Structure	of	model,	M2,	trained	on	task	2Figure	7:	Structure	of	model,	M1,	

trained	on	task	1	
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Fig.	8,	each	parameter	is	regularized.	For	example,	“v.0.w”	represents	the	

parameter	value	of	the	first	layer	and	the	values	(i.e.	w:	0,	omega:0)	following	

“v.0.w”	represent	the	regularized	parameters	of	the	first	layer.	The	

definitions	of	each	of	these	attributes	is	found	in	Table	II.	The	training	

process	for	task	2	is	like	the	training	process	in	task	1,	except	for	the	notable	

use	of	Weighted	Stochastic	Gradient	Descent	(SGD).	Unlike	the	traditional	

SGD,	the	Weighted	SGD	method	has	additional	attributes	to	consider	when	

updating	the	parameter	values	during	backward	propagation.	

	

	

	

	

	

	

Figure	8:	Structure	of	model,	M2,	trained	on	task	2	
 

Figure	8:	Structure	of	model,	M2,	trained	on	task	2	
 

Figure	8:	Structure	of	model,	M2,	trained	on	task	2	
 

Figure	8:	Structure	of	model,	M2,	trained	on	task	2	
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Regularized	Parameter	Attributes	 Definition	
w	 Parameter	weights	

omega	 Importance	weights	
init_val	 Parameter	data	
name	 Parameter	name	
lambda	 Regularization	rate	

	

In	Weighted	SGD,	the	parameter	values	in	each	layer	are	updated	after	

performing	a	series	of	operations.	Initially,	a	weighted	difference	is	

computed	by	subtracting	the	current	weight	value	of	a	parameter	with	the	

initial	value	of	the	parameter.	This	weighted	difference	is	then	multiplied	

with	a	constant	2,	the	omega	attribute	from	the	regularized	parameter,	and	

lambda.	This	product	is	then	added	to	the	parameter’s	gradient	value.	If	a	

momentum	is	defined	and	the	state	of	the	parameter	has	not	been	initialized	

yet,	a	buffer	is	created	which	stores	a	copy	of	the	parameter's	gradient	value	

as	part	of	its	initialization.	In	this	case,	the	value	stored	in	the	buffer	is	the	

same	as	the	gradient	value,	so	the	gradient	value	remains	the	same.	If	a	

momentum	is	defined	and	the	state	of	the	parameter	has	already	been	

initialized,	then	the	value	inside	the	buffer	is	multiplied	with	the	defined	

momentum	and	added	with	the	parameter's	gradient	value.	In	both	cases,	the	

parameter’s	data	gets	updated	by	adding	the	gradient	data.	This	process	

repeats	for	all	the	parameters	in	each	layer	of	the	model.	Fig.	9	shows	how	

the	parameter	value	gets	updated	with	Weighted	SGD	for	the	first	layer.	

TABLE	II:	Attributes	of	Regularized	Parameters 
 

Figure 9: Example of Weighted SGD for first layer for model, M2TABLE	II:	
Attributes	of	Regularized	Parameters 

 
Figure	9:	Example	of	Weighted	SGD	for	first	layer	for	model,	M2	

 
Figure 10: Structure of model trained on task 3, M3Figure 9: Example of Weighted 
SGD for first layer for model, M2TABLE	II:	Attributes	of	Regularized	Parameters 

 
Figure 9: Example of Weighted SGD for first layer for model, M2TABLE	II:	

Attributes	of	Regularized	Parameters 
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The	training	and	validation	phase	is	carried	off	in	each	epoch	for	a	total	of	10	

epochs.	At	the	end	of	each	validation	phase,	accuracy	is	computed,	and	the	

model	is	saved	if	it	showed	improved	validation	accuracy.			

Task	3	is	trained	like	task	2	with	a	few	adjustments.	The	head	layer	is	

replaced	with	2	new	units	since	the	expected	outputs	of	task	3	are	[4,	5].	

Recall,	regularized	parameters	were	initialized	when	the	model	was	being	

trained	on	task	2.	Now,	these	regularized	parameters	are	updated	for	the	

new	task.	Prior	to	the	update,	the	regularized	parameters	for	the	head	layer	

are	removed.	For	the	existing	regularized	parameters,	omega	is	updated	to	1	

and	init_val	is	updated	to	the	data	of	the	parameter.	Since	the	regularized	

Figure	9:	Example	of	Weighted	SGD	for	first	layer	for	model,	M2	
 
Figure	10:	Structure	of	model	trained	on	task	3,	M3Figure	9:	Example	of	Weighted	

SGD	for	first	layer	for	model,	M2	
 

Figure	10:	Structure	of	model	trained	on	task	3,	M3	
 

Figure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	
datasetFigure	10:	Structure	of	model	trained	on	task	3,	M3Figure	9:	Example	of	

Weighted	SGD	for	first	layer	for	model,	M2	
 
Figure	10:	Structure	of	model	trained	on	task	3,	M3Figure	9:	Example	of	Weighted	

SGD	for	first	layer	for	model,	M2	
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parameters	of	the	head	layer	were	removed,	it’s	initialized	with	omega	to	1	

and	init_val	to	the	data	of	the	parameter.	The	regularized	parameters	of	the	

model	now	only	consist	of	three	attributes,	omega,	init_val,	and	lambda.	Fig.	

10	showcases	the	structure	of	the	model	trained	on	task	3,	M3.	After	

updating	the	regularized	parameters,	the	rest	of	the	training	and	validation	

process	is	the	same	as	that	of	task	2	with	Weighted	SGD	and	calculation	of	

average	loss	and	accuracy	to	find	the	best	model	that	was	trained	on	task	3.	

Furthermore,	task	4	and	5	in	the	same	way	as	task	3.	After	training	is	

completed,	five	models	can	be	found,	each	one	trained	on	one	task.	

	

b) IMM	Merging	Process:	After	the	server	has	completed	training	for	each	task,	

each	model	is	used	to	calculate	user	priors,	or	importance	weights	(IW),	from	

Figure	10:	Structure	of	model	trained	on	task	3,	M3	
 

Figure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	
datasetFigure	10:	Structure	of	model	trained	on	task	3,	M3	

 
Figure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	dataset	

 
Figure	12:	General	structure	of	each	model	after	regularized	parameters	are	

removedFigure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	
datasetFigure	10:	Structure	of	model	trained	on	task	3,	M3	

 
Figure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	

datasetFigure	10:	Structure	of	model	trained	on	task	3,	M3	
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the	user	dataset,	as	part	of	user	adaptation.	The	IW	are	then	sent	to	the	

server	to	create	a	merged	model	for	each	task	with	the	server	trained	models	

and	user	priors.	In	this	experiment,	there	are	two	users.	To	illustrate	the	

merging	process	in	its	entirety,	the	focus	will	be	on	user	1,	even	though	the	

same	method	is	applied	to	user	2.	

Once	the	server	has	finished	training	on	all	tasks,	a	model	can	be	

found	for	each	task.	In	this	experiment,	there	were	5	tasks	so	5	trained	

models	can	be	found,	as	shown	on	the	right-hand	side	of	Fig.	11.	Each	of	the	

models	is	going	to	be	used	to	calculate	IW	from	the	user	dataset	that	

theoretically	resides	on	a	user	device.	This	user	dataset	has	been	divided	into	

appropriate	tasks	beforehand,	as	shown	on	the	left-hand	side	of	Fig.	11.	

	

	

	

	

	

	

	

	

	
Figure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	dataset	

 
Figure	12:	General	structure	of	each	model	after	regularized	parameters	are	

removedFigure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	
dataset	

 
Figure	12:	General	structure	of	each	model	after	regularized	parameters	are	removed	
 

Figure	13:	Optimization	process	of	updating	regularized	parametersFigure	12:	
General	structure	of	each	model	after	regularized	parameters	are	removedFigure	11:	

Each	user	model	is	used	to	extract	importance	weights	from	user	dataset	
 

Figure	12:	General	structure	of	each	model	after	regularized	parameters	are	
removedFigure	11:	Each	user	model	is	used	to	extract	importance	weights	from	user	
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Prior	to	calculating	the	IW	and	merging	models,	the	regularized	parameters	

for	each	layer	in	all	models	is	removed	and	re-initialized	with	new	attributes	

and	values.	The	attributes	are	omega,	prev_omega,	and	init_val	which	is	

initialized	to	0,	the	previous	omega	value	and	the	data	of	the	parameter,	

respectively.	The	general	structure	of	each	model	can	be	seen	in	Fig.	12.	

	

	

	

	

	

	

	

	

	

	

	

	

A	merged	model	is	computed	for	each	task	except	for	the	first	task	by	a	

merging	process	as	defined	by	IMM.	In	the	IMM	merging	process,	importance	

weights	are	computed	for	each	task	using	L2	norm	followed	by	a	calculation	

of	a	running	total	of	the	importance	weights	of	all	tasks.	Next,	the	merging	

Figure	12:	General	structure	of	each	model	after	regularized	parameters	are	
removed	

 
Figure	13:	Optimization	process	of	updating	regularized	parametersFigure	
12:	General	structure	of	each	model	after	regularized	parameters	are	

removed	
 

Figure	13:	Optimization	process	of	updating	regularized	parameters	
 

Figure	14:	Model,	M1,	with	updated	regularized	parametersFigure	13:	
Optimization	process	of	updating	regularized	parametersFigure	12:	General	

structure	of	each	model	after	regularized	parameters	are	removed	
 
Figure	13:	Optimization	process	of	updating	regularized	parametersFigure	
12:	General	structure	of	each	model	after	regularized	parameters	are	

removed	
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process	begins	by	first	merging	task	2	and	task	1,	followed	by	merging	task	3	

with	task	2	and	task	1,	then	merging	task	4	with	task	3,	task	2	and	task	1,	and	

finally	merging	task	5	with	all	previous	tasks	through	a	series	of	operations.	

i. Importance	Weight	Calculation 

User	1	data,	which	consists	of	images	that	contain	0	and	1	from	the	

testing	SVHN	dataset,	in	addition	to	images	that	contain	digits	2	through	

9,	is	fed	into	model	M1	in	batches	of	20	and	the	outputs	are	computed.	

Once	the	model	outputs	are	retrieved,	a	Mean	Squared	Error	(MSE)	loss	is	

computed	with	the	model	output	and	accumulated	with	each	batch	of	

data.	After	each	batch	of	data	is	processed,	the	optimization	process	

starts	and,	in	this	process,	the	regularized	parameters	for	each	layer	in	

the	model	are	updated	through	a	series	of	operations.	For	example,	let’s	

say	v.0.w	is	the	regularized	parameter	that	represents	weights	in	the	first	

layer	of	the	model.	This	parameter	has	attributes	omega,	prev_omega,	and	

init_val	which	are	initialized	to	0,	some	value	and	data	of	the	parameter	

respectively.	The	omega	attribute	is	multiplied	with	the	previous	size	of	

the	data,	added	with	the	gradient	data	of	the	parameter,	and	divided	by	

the	current	size	of	the	data	set	in	this	sequence.	The	omega	value	gets	

updated	for	v.0.w.	An	illustration	of	this	can	be	found	in	Fig.	13.	This	same	

process	is	applied	to	all	the	parameters	until	all	the	user	data	has	been	

processed.	At	the	end,	L2	norm	is	computed	by	dividing	the	accumulated	
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data	with	total	data	and	M1	is	returned	with	updated	regularized	

parameters	as	seen	in	Fig.	14.	

	

	

	

	

	

	

	

This	process	is	repeated	for	all	tasks	and	corresponding	models.	It’s	

important	to	note	that	the	importance	weights	are	the	updated	omega	

values	and	importance	weights	of	the	head	layer	are	not	considered	

during	the	merging	process	as	indicated	in	Fig.	14.	This	IW	calculation	is	

Figure	13:	Optimization	process	of	updating	regularized	parameters	
 
Figure	14:	Model,	M1,	with	updated	regularized	parametersFigure	13:	Optimization	

process	of	updating	regularized	parameters	
 

Figure	14:	Model,	M1,	with	updated	regularized	parameters	
 

Figure	15:	Importance	weights	of	each	of	the	5	tasksFigure	14:	Model,	M1,	with	
updated	regularized	parametersFigure	13:	Optimization	process	of	updating	

regularized	parameters	
 
Figure	14:	Model,	M1,	with	updated	regularized	parametersFigure	13:	Optimization	

process	of	updating	regularized	parameters	Figure	14:	Model,	M1,	with	updated	regularized	parameters	
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done	for	each	task	and	an	illustration	of	the	importance	weights	for	each	

task	can	be	seen	in	Fig.	15.	

	

ii. Running	Sum	of	Importance	Weights	Calculation 

The	running	sum	of	importance	weights	is	initialized	with	the	IW	

of	task	1.	Subsequently,	after	the	calculation	of	the	IW	of	task	2,	the	

running	sum	of	importance	weights	is	accumulated	with	the	IW	of	task	2	

as	shown	in	Fig.	16.	This	process	continues	until	all	the	importance	

weights	for	all	tasks	are	considered,	as	seen	in	Fig.	17.	

	

	

Figure	15:	Importance	weights	of	each	of	the	5	tasks	
 

Figure	16:	Summation	of	importance	weights	of	task	1	and	task	2Figure	15:	
Importance	weights	of	each	of	the	5	tasks	

 
Figure	16:	Summation	of	importance	weights	of	task	1	and	task	2	

 
Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1Figure	16:	
Summation	of	importance	weights	of	task	1	and	task	2Figure	15:	Importance	weights	

of	each	of	the	5	tasks	
 

Figure	16:	Summation	of	importance	weights	of	task	1	and	task	2Figure	15:	
Importance	weights	of	each	of	the	5	tasks	

Figure	16:	Summation	of	importance	weights	of	task	1	and	task	2	
 
Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1Figure	16:	

Summation	of	importance	weights	of	task	1	and	task	2	
 

Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1	
 
Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1Figure	16:	

Summation	of	importance	weights	of	task	1	and	task	2	
 
Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1Figure	16:	

Summation	of	importance	weights	of	task	1	and	task	2	
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iii. Merging 

Recall	that	task	1	does	not	have	a	merged	model	associated	with	it	

because	it’s	the	first	task	and	there	is	no	previous	task	for	it	to	merge	

with.	Initially,	a	merged	model	is	created	for	task	2	by	merging	it	with	

task	1	through	a	series	of	steps.	

1. Calculate	the	weightage	(importance)	of	the	parameter	values	

in	each	layer	of	the	task	2	model	by	dividing	the	IW	of	task	1	

with	the	running	sum	value	that	is	averaged	over	task	1	and	2.	

2. Multiply	the	weightage	with	the	parameter	values	of	the	

corresponding	layer	

3. Create	a	running	sum	of	product	

4. Repeat	the	process	until	there	are	no	more	tasks	to	merge	

5. Update	the	parameter	value	with	the	mean	that	is	computed	by	

dividing	the	running	sum	with	the	total	number	of	tasks	that	

were	to	be	merged	

Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1	
 

Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1	
 

Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1	
 

Figure	17:	Summation	of	importance	weights	for	all	tasks,	excluding	task	1	
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This	same	set	of	steps	are	followed	by	merging	task	3	with	task	2	and	task	

1,	merging	task	4	with	task	3,	task	2,	and	task	1,	and	lastly	merging	task	5	

with	all	previous	tasks.	At	the	end	of	the	merging	process,	there	should	be	

four	merged	models	for	all	tasks	except	for	the	first	task.	

2) MIT	Indoor	Scenes	Experiments:	The	MIT	Indoor	Scenes	dataset	was	used	in	the	

last	two	experiments.	Both	these	experiments	incrementally	train	a	VGG11	

(pretrained	on	ImageNet)	model	on	a	series	of	tasks	defined	by	the	MIT	Indoor	

Scenes	dataset.	This	dataset	consists	of	5	super	categories	and	each	super	category	

has	subcategories	associated	with	it.	The	5	super	categories	are	store,	home,	public	

spaces,	leisure	and	working	place.	Each	of	these	super	categories,	aside	from	working	

place,	is	defined	as	a	task.	A	clear	picture	of	the	defined	tasks	can	be	found	in	Table	

III.	The	MIT	Indoor	Scenes	dataset	contains	67	indoor	categories	and	a	total	of	

15620	images.	However,	in	both	experiments,	only	5360	images	were	used	for	

training	and	only	1,340	images	were	used	for	testing.	

	

TASKS	 SUBSET	OF	INDOOR	SCENES	
1	 home	
2	 leisure	
3	 public	
4	 store	

	

	

	

TABLE	III:	Tasks	of	MIT	Indoor	Scenes 
 

Figure 16: Confusion Matrices for all 5 
unmerged modelsTABLE	III:	Tasks	of	

MIT	Indoor	Scenes 
 
Figure	18:	Confusion	Matrices	for	all	5	

unmerged	models	
 
Figure 17: Plot of average accuracies for 
all 5 tasksFigure 16: Confusion Matrices 

for all 5 unmerged modelsTABLE	III:	
Tasks	of	MIT	Indoor	Scenes 

 
Figure 16: Confusion Matrices for all 5 
unmerged modelsTABLE	III:	Tasks	of	

MIT	Indoor	Scenes 
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a) User	Transform:	The	first	experiment	on	the	MIT	Indoor	Scenes	dataset	

	considered	a	total	of	10	users	and	each	user	is	allocated	an	equal	amount	of	data	

from	all	categories	in	all	tasks	from	the	testing	set	of	images.	For	example,	user	1	

has	been	allocated	635	evaluation	samples	and	639	importance	weight	samples	

from	task	2.	User	2	also	has	the	same	number	of	evaluation	and	importance	

weight	samples	from	task	2.	In	other	words,	no	user	has	preferences	over	the	

categories	and	importance	weights	are	calculated	across	all	categories.	In	

addition	to	this	change,	a	transform	is	applied	to	the	training	and	validation	

dataset	on	the	server	and	a	different	transform	is	applied	to	each	user	dataset	as	

an	additional	privacy	measure.		

i. Server	Training	of	Models	for	all	Tasks 

All	4	tasks	are	trained	incrementally	on	the	server	using	IMM	just	

like	in	the	numbers	experiment.	This	experiment	starts	with	a	VGG11	

model	that	was	pretrained	on	ImageNet.	Prior	to	training	task	1,	the	

classifier	layer	of	the	VGG11	model	is	replaced	with	14	new	output	units	

because	task	1	contains	14	subcategories.	After	replacing	the	head	layer,	

training	begins	by	feeding	the	model	with	data	of	mini	batches	of	size	30,	

computing	loss	using	the	cross-entropy	loss	function	and	using	Stochastic	

Gradient	Descent	(SGD)	as	the	optimizer	to	compute	the	gradient	of	the	

loss	with	respect	to	all	trainable	parameters.	Both	the	training	phase	and	

validation	phase	is	carried	off	in	each	epoch.	There	are	a	total	of	49	
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epochs	defined,	however,	it	doesn’t	run	through	all	the	epochs	if	a	best	

model	has	already	been	found.	At	the	end	of	the	validation	phase	in	each	

epoch,	the	model	with	the	highest	accuracy	gets	saved	for	task	1.	

The	model	that	will	be	used	to	train	task	2	is	the	model	that	was	

trained	on	task	1	through	weight	transfer.	Since	we	want	to	preserve	the	

model	for	task	1,	we	replace	the	head	layer	with	11	new	units	since	there	

are	11	subcategories	in	task	2.	After	replacing	the	head	layer,	the	model	is	

initialized	with	regularized	parameters	for	each	layer	by	setting	a	few	

attributes,	that	have	not	been	initialized,	to	0.	The	attributes	of	the	

regularized	parameters	are	w,	omega,	init_val,	name,	and	lambda.	The	

definitions	of	each	of	these	attributes	is	found	in	Table	II.	The	training	

process	of	task	2	is	like	the	training	process	of	task	1.	Just	as	in	the	

numbers	experiment,	the	Weighted	Stochastic	Gradient	Descent	(SGD)	is	

used	as	the	optimizer.	At	the	end	of	the	training	and	validation	phase	in	

each	epoch,	accuracy	is	compared	with	the	best	accuracy	and	the	best	

accuracy	value	gets	updated	to	the	current	accuracy	for	the	next	epoch	

and	the	best	model	gets	saved	for	task	2.	

	Task	3	is	trained	like	task	2	with	a	few	adjustments.	The	head	

layer	is	replaced	with	14	new	units	since	the	outputs	of	task	3	are	14	

subcategories.	Recall,	regularized	parameters	were	initialized	when	the	

model	was	being	trained	on	task	2.	Now,	these	regularized	parameters	
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are	updated	for	the	new	task.	Prior	to	the	update,	the	regularized	

parameters	for	the	head	layer	are	removed.	For	the	existing	regularized	

parameters,	omega	is	updated	to	1	and	init_val	is	updated	to	the	data	of	

the	parameter.	Since	the	regularized	parameters	of	the	head	layer	were	

removed,	its	initialized	with	omega	to	1	and	init_val	to	the	data	of	the	

parameter.	The	regularized	parameters	of	the	model	now	only	consist	of	

three	attributes,	omega,	init_val,	and	lambda.	After	updating	the	

regularized	parameters,	the	rest	of	the	training	and	validation	process	is	

the	same	as	that	of	task	2	with	Weighted	SGD	and	calculation	of	average	

loss	and	accuracy	to	find	the	best	model	that	was	trained	on	task	3.	

Furthermore,	task	4	is	trained	in	the	same	way	as	task	3.	After	training	is	

completed,	four	models	can	be	found,	each	one	trained	on	one	task.	

ii. IMM	Merging	Process 

After	the	server	has	completed	training	for	each	task,	each	model	

is	used	to	calculate	user	priors,	or	importance	weights	(IW),	from	the	

user	dataset,	as	part	of	user	adaptation.	In	this	experiment,	there	are	ten	

users.	Recall	that	each	of	these	10	users	do	not	have	a	preference	over	the	

categories	in	each	task.	Rather,	the	user	dataset	is	composed	of	images	

from	all	tasks,	and	it’s	divided	into	an	evaluation	dataset	and	an	

importance	weight	dataset.	As	the	name	indicates	the	importance	weights	

are	calculated	from	the	importance	weight	dataset.	To	illustrate	the	
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merging	process	in	its	entirety,	the	focus	will	be	on	user	1,	even	though	

the	same	method	is	applied	to	the	rest	of	the	users.		

Once	the	server	has	finished	training	on	all	tasks,	a	model	can	be	

found	for	each	task.	In	this	experiment,	there	were	4	tasks	so	4	trained	

models	can	be	found.	Each	of	the	models	is	going	to	be	used	to	calculate	

IW	from	the	user	dataset,	which	has	been	divided	into	appropriate	tasks	

beforehand.	Prior	to	calculating	the	IW	and	merging	models,	the	

regularized	parameters	for	each	layer	in	all	models	is	removed	and	re-

initialized	with	new	attributes	and	values.	The	attributes	are	omega,	

prev_omega,	and	init_val	which	is	initialized	to	0,	previous	omega	value	

and	the	data	of	the	parameter,	respectively.	Please	refer	to	the	importance	

weight	section	in	the	numbers	experiment	to	see	how	importance	weights	

are	calculated.		

A	merged	model	is	computed	for	each	task	except	for	the	first	task	

by	a	merging	process	as	defined	by	IMM.	In	the	IMM	merging	process,	

importance	weights	are	computed	for	each	task	using	L2	norm	followed	

by	a	calculation	of	a	running	total	of	the	importance	weights	of	all	tasks.	

Next,	the	merging	process	begins	by	first	merging	task	2	and	task	1,	

followed	by	merging	of	task	3	with	task	2	and	task	1,	then	merging	task	4	

with	task	3,	task	2	and	task	1.	Please	refer	to	the	merging	process	section	
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described	in	the	numbers	experiment	because	the	same	process	is	applied	

for	this	experiment.	

b) Category	Prior:	In	contrast	to	the	first	experiment	on	the	MIT	Indoor	Scenes 

	dataset,	the	second	experiment	assigns	preference	of	3	categories	to	each	of	the	

5	users	that	this	experiment	considers.	Users	are	allocated	data	based	on	the	

categories	they	prefer	from	all	tasks.	For	example,	user	1	has	been	allocated	132	

evaluation	samples	and	133	importance	weight	samples	with	preferences	for	

winecellar,	dining	room	and	corridor	from	task	2.	User	2	has	131	evaluation	

samples	and	133	importance	weight	samples	with	preferences	for	dining	room,	

corridor,	and	winecellar.	Also,	unlike	the	first	experiment,	there	is	no	transform	

applied	to	the	training	and	validation	dataset	on	the	server	nor	on	the	user	

dataset.	The	training,	merging,	and	testing	processes	for	this	experiment	is	the	

same	as	the	user	transform	experiment	so,	please	refer	to	that	section	for	concepts.	

	

VI. PRELIMINARY	RESEARCH	

A. Analysis	of	DUA	Framework	

A	few	questions	arise	upon	closer	inspection	of	the	three	experiments	that	were	

executed	on	the	DUA	framework.	In	a	real-world	setting,	there	is	no	guarantee	that	the	

dataset	contained	in	the	user	device	is	like	the	dataset	contained	in	the	server.	

However,	in	all	three	experiments,	the	same	datasets	were	used	for	both	the	server	and	

user	devices.	For	example,	in	the	numbers	experiment,	the	MNIST	and	SVHN	datasets	
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were	used	for	both	training	on	the	server	and	data	on	user	devices.	Upon	further	

observation,	in	all	three	experiments,	the	dataset	in	the	user	device	is	divided	into	a	

series	of	tasks	just	as	the	server.	In	other	words,	the	number	of	tasks	in	the	user	device	

is	the	same	as	the	number	of	tasks	in	the	server.	In	addition	to	the	fact	that	there	is	no	

guarantee	that	the	user	data	will	be	like	server	data,	there	is	no	guarantee	that	user	

data	will	be	divided	into	a	series	of	tasks	since	user	data	is	continuously	evolving.	These	

observations	suggest	that	the	DUA	framework	is	built	upon	a	series	of	assumptions.	A	

question	that	arises	then	is	that,	how	is	the	performance	of	server	trained	models	and	

models	delivered	to	the	user	on	unseen	data?	Therefore,	it’s	important	to	investigate	

the	robustness	of	these	models	on	unseen	data.	

1) Implementation	Plan	to	Check	Robustness:	

a) Numbers	Experiment: 

In	this	experiment,	as	defined	in	the	paper,	each	merged	model	was	tested	on	

all	task	data.	For	example,	the	merged	model	in	task	2	was	tested	on	task	1	data	

and	evaluated	by	replacing	its	head	layer	with	that	of	the	model	trained	on	task	

1.	This	testing	and	evaluation	process	was	done	for	all	merged	models.	It’s	

important	to	mention	that	the	testing	data	that	was	used	to	evaluate	the	

performance	of	all	merged	models	on	all	tasks	was	the	same	as	the	user	dataset	

that	was	initially	used	to	calculate	importance	weights	for	the	merging	process.	

Hence,	it’s	essential	to	check	the	robustness	of	these	merged	models	by	

evaluating	it	on	unseen	data	and	we	are	using	.		
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1. Pre-process	the	EMNIST	digits	dataset	by	applying	a	series	of	

transforms	

2. Divide	the	EMNIST	digits	dataset	into	the	same	5	tasks	as	

defined	in	the	server	by	both	MNIST	and	SVHN	datasets	

3. Feed	the	unseen	EMNIST	digits	task	data	into	the	server	trained	

models	and	evaluate	how	each	model	performs	on	unseen	data	

4. Repeat	the	previous	step	for	the	merged	models	for	user	1	and	

evaluate	how	each	merged	model	performs	on	unseen	data	

5. Replace	the	head	layer	of	each	unmerged	model	with	the	head	

layer	of	all	models	

6. Feed	the	unseen	EMNIST	digits	data	into	each	corresponding	

newly	configured	model	and	evaluate	how	each	unmerged	model	

performs	on	unseen	data	

7. Repeat	the	previous	two	steps	for	merged	models	and	evaluate	

how	each	merged	model	performs	on	unseen	data	

b) MIT	Indoor	Scenes	Experiment:	There	were	two	experiments	that	used	the	

						MIT	indoor	scenes	dataset,	user	transform	and	category	prior.	However,	the	

robustness	check	will	only	be	performed	on	the	category	prior	experiment	for	

the	purpose	of	illustrating	how	robustness	is	done.	

In	this	experiment,	each	merged	model	was	tested	on	all	task	data.	For	

example,	the	task	2	merged	model	was	tested	on	task	1	data	and	evaluated	by	
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replacing	its	head	layer	with	that	of	the	model	trained	on	task	1.	This	testing	and	

evaluation	process	was	done	for	all	merged	models.	It’s	important	to	mention	

that	the	testing	data	that	was	used	to	evaluate	the	performance	of	all	merged	

models	on	all	tasks	was	the	evaluation	dataset	that	was	created	from	the	MIT	

indoor	scenes	dataset.	Hence,	it’s	essential	to	check	the	robustness	of	these	

models	by	evaluating	it	on	unseen	data.	

1. Gather	non-commercial	images	from	all	categories	in	each	task	

from	Google	using	the	google-images-download	tool	

2. Divide	the	custom	scenes	dataset	into	tasks	like	the	tasks	in	the	

experiment.	

3. Feed	the	unseen	scenes	task	data	into	the	server	trained	models	

and	evaluate	how	each	model	performs	on	unseen	data	

4. Repeat	the	previous	step	for	the	merged	models	for	user	1	and	

evaluate	how	each	merged	model	performs	on	unseen	data	

5. Implement	and	train	a	centralized	model	with	user	data	and	

compare	its	performance	with	that	of	the	DUA	framework	

6. Implement	FedAvg	and	train	the	framework	using	MIT	indoor	

scenes	dataset	to	compare	its	performance	with	that	of	the	DUA	

framework	

7. Repeat	step	6	with	FedProx	framework	
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2) Evaluation	Results:	

a) 	Robustness	Check	of	Numbers	Experiment: 

i. Unmerged	Models 

The	first	robustness	check	that	was	done	was	to	see	how	well	all	server			

trained	models	(unmerged	models)	performed	on	unseen	EMNIST	task	data.	

Recall	that	there	is	a	model	for	every	task	after	the	server	is	done	training.	

Appropriate	task	data	was	fed	into	corresponding	task	models	in	batches	of	50	

and	an	average	accuracy	was	computed	after	all	the	data	had	been	processed.	

Fig.	18	displays	the	confusion	matrices	for	all	unmerged	models.		The	first	

confusion	matrix	that	is	shown	in	Fig.	18	is	that	of	task	1	unmerged	model	and	it	

shows	that	3969	samples	out	of	4000	were	correctly	classified	as	0	and	3931	

samples	out	of	4000	were	correctly	classified	as	1.	It	also	shows	that	31	samples	

out	of	4000	were	misclassified	as	1	when	the	expected	value	was	supposed	to	be	

0	and	69	out	of	4000	samples	were	misclassified	as	0	when	the	expected	value	

was	supposed	to	be	1.	All	the	confusion	matrices	in	Fig.	18	indicate	the	number	

of	correct	classifications	and	misclassifications	of	each	task.		
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	 Figure	18:	Confusion	Matrices	for	all	5	unmerged	models	
 
Figure	17:	Plot	of	average	accuracies	for	all	5	tasksFigure	16:	Confusion	Matrices	for	all	

5	unmerged	models	
 

Figure	19:	Plot	of	average	accuracies	for	all	5	tasks	
 

Figure	18:	Confusion	Matrices	for	all	4	merged	modelsFigure	17:	Plot	of	average	
accuracies	for	all	5	tasksFigure	18:	Confusion	Matrices	for	all	5	unmerged	models	
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Fig.	19	provides	the	average	accuracy	values	for	task	models	based	on	the	

confusion	matrices	that	were	received	on	the	EMNIST	dataset.	Based	on	the	

results,	the	average	accuracy	was	high	for	task	1,	2	and	3	models	and	somewhat	

high	for	tasks	4	and	5.	Perhaps,	one	reason	why	the	accuracy	wasn’t	high	for	

tasks	4	and	5	when	compared	with	the	accuracies	for	tasks	1,	2	and	3	is	due	to	

the	updated	regularized	parameters	as	part	of	the	training	process.	Nonetheless,	

the	task	models	do	well	in	predicting	the	tasks	they	were	trained	for	on	unseen	

task	data.	

	

	

	

	

	

	

	

	

	

ii. Merged	Models 

The	second	robustness	check	was	to	verify	that	each	merged	model	

performed	correctly	on	its	corresponding	task.	Each	parameter	in	a	merged	

model	contains	the	mean	parameter	value	of	its	previous	tasks.	For	example,	

Figure	19:	Plot	of	average	accuracies	for	all	5	tasks	
 

Figure	18:	Confusion	Matrices	for	all	4	merged	modelsFigure	17:	Plot	of	average	
accuracies	for	all	5	tasks	

 
Figure	20:	Confusion	Matrices	for	all	4	merged	models	

 
Figure	18:	Confusion	Matrices	for	all	4	merged	modelsFigure	19:	Plot	of	average	

accuracies	for	all	5	tasks	
 

Figure	18:	Confusion	Matrices	for	all	4	merged	modelsFigure	17:	Plot	of	average	
accuracies	for	all	5	tasks	
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the	weights	in	the	merged	model	of	task	2	is	the	average	of	weights	in	both	task	

1	model	and	task	2	model.	Like	how	the	first	robustness	check	was	done,	

appropriate	task	data	was	fed	into	corresponding	task	merged	models	in	

batches	of	50	and	an	average	accuracy	was	computed	after	all	the	data	had	been	

processed.	Fig.	20	displays	the	confusion	matrices	for	all	merged	models.	

	

	

	

Figure	20:	Confusion	Matrices	for	all	4	merged	models	
 

Figure	18:	Confusion	Matrices	for	all	4	merged	models	
 

Figure	20:	Confusion	Matrices	for	all	4	merged	models	
 

Figure	18:	Confusion	Matrices	for	all	4	merged	models	
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Fig.	21	provides	the	average	accuracy	values	for	all	merged	models	that	were	

received	on	the	EMNIST	dataset.	

	

	

	

	

	

	

	

	

	

Task	1	does	not	have	a	merged	model.	Based	on	the	results	in	Fig.	21,	the	

accuracy	on	the	merged	model	for	task	2	is	slightly	less	than	the	accuracy	on	the	

unmerged	model	for	task	2	because	the	weights	of	the	merged	model	are	

averaged	over	two	tasks,	task	1	and	2.	The	accuracies	for	tasks	3,	4	and	5	are	

substantially	low	and	this	could	be	because	weights	are	averaged	over	all	

previous	tasks.	This	suggests	that	some	of	the	information	that	is	learned	is	lost	

when	models	are	merged.	

iii. Unmerged	Models	with	Classifier	Layers	of	all	Models 

Compared	to	the	previous	two	evaluation	experiments,	the	third	

robustness	check	is	done	differently.	In	this	evaluation	study,	the	classifier	layer	

Figure	21:	Plot	of	average	accuracies	for	all	4	merged	models	
 
Figure	20:	Model	configuration	with	classifier	layers	of	all	modelsFigure	19:	Plot	of	

average	accuracies	for	all	4	merged	models	
 

Figure	22:	Model	configuration	with	classifier	layers	of	all	models	
 

Figure	21:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	
modelsFigure	20:	Model	configuration	with	classifier	layers	of	all	modelsFigure	21:	Plot	

of	average	accuracies	for	all	4	merged	models	
 
Figure	20:	Model	configuration	with	classifier	layers	of	all	modelsFigure	19:	Plot	of	

average	accuracies	for	all	4	merged	models	
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of	each	model	will	be	replaced	with	classifier	layers	of	all	models.	For	example,	

the	classifier	layer	of	task	1	unmerged	model	is	originally	composed	of	2	nodes	

as	in	Fig.	6.	After	replacing	this	layer	with	classifier	layers	from	all	unmerged	

models,	the	classifier	layer	of	task	1	will	be	composed	of	10	nodes.	Fig.	22	

showcases	the	architecture	of	the	new	model	configuration.	

	

	

	

	

	

	

	

	

	

	

	

	

The	new	model	configuration	in	Fig.	22	is	applied	to	all	the	unmerged	models	by	

replacing	the	backbone	architecture	with	each	unmerged	model.	For	example,	

when	the	backbone	architecture	is	the	unmerged	model	for	task	1,	the	new	

model	configuration	can	be	seen	in	Fig.	23.	

Figure	22:	Model	configuration	with	classifier	layers	of	all	models	
 

Figure	21:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	
modelsFigure	20:	Model	configuration	with	classifier	layers	of	all	models	

 
Figure	23:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	models	

 
Figure	22:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	

datasetFigure	21:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	
modelsFigure	22:	Model	configuration	with	classifier	layers	of	all	models	

 
Figure	21:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	
modelsFigure	20:	Model	configuration	with	classifier	layers	of	all	models	
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	 Fig.	24	and	Table	IV	contain	the	confusion	matrix	and	performance	

metrics	for	task	1	unmerged	model,	respectively.	Fig.	25	and	Table	V	contain	the	

confusion	matrix	and	performance	metrics	for	task	2	unmerged	model,	

respectively.	Fig.	26	and	Table	VI	contain	the	confusion	matrix	and	performance	

metrics	for	task	3	unmerged	model,	respectively.	Fig.	27	and	Table	VII	contain	

the	confusion	matrix	and	performance	metrics	for	task	4	unmerged	model,	

respectively.	Fig.	28	and	Table	VIII	contain	the	confusion	matrix	and	

performance	metrics	for	task	5	unmerged	model,	respectively.	

Figure	23:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	models	
 

Figure	22:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	
datasetFigure	21:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	

models	
 
Figure	24:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	22:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	

datasetFigure	23:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	
models	

 
Figure	22:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	

datasetFigure	21:	Task	1	unmerged	model	as	backbone	with	classifier	layers	of	all	
models	
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Figure	24:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	dataset	
 
Figure	22:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	24:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	22:	Confusion	Matrix	for	Task	1	Unmerged	Model	on	entire	EMNIST	dataset	

TABLE	IV:	Performance	Metrics	of	Task	1	Unmerged	Model	for	EMNIST	dataset 
 
Figure 23: Confusion Matrix for Task 2 Unmerged Model on entire EMNIST datasetTABLE	

IV:	Performance	Metrics	of	Task	1	Unmerged	Model	for	EMNIST	dataset 
 
Figure	25:	Confusion	Matrix	for	Task	2	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure 23: Confusion Matrix for Task 2 Unmerged Model on entire EMNIST datasetTABLE	

IV:	Performance	Metrics	of	Task	1	Unmerged	Model	for	EMNIST	dataset 
 
Figure 23: Confusion Matrix for Task 2 Unmerged Model on entire EMNIST datasetTABLE	

IV:	Performance	Metrics	of	Task	1	Unmerged	Model	for	EMNIST	dataset 
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Based	on	the	confusion	matrix	and	performance	metrics	for	task	1	unmerged	

model,	there	was	a	high	accuracy	for	predicting	0	and	1,	which	is	expected	since	

this	model	was	trained	for	classifying	0	and	1.		

	

	

	

Figure	25:	Confusion	Matrix	for	Task	2	Unmerged	Model	on	entire	EMNIST	dataset	
 
Figure	23:	Confusion	Matrix	for	Task	2	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	25:	Confusion	Matrix	for	Task	2	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	23:	Confusion	Matrix	for	Task	2	Unmerged	Model	on	entire	EMNIST	dataset	

TABLE	V:	Performance	Metrics	of	Task	2	Unmerged	Model	for	EMNIST	dataset 
 
Figure 24: Confusion Matrix for Task 3 Unmerged Model on entire EMNIST datasetTABLE	

V:	Performance	Metrics	of	Task	2	Unmerged	Model	for	EMNIST	dataset 
 
Figure	26:	Confusion	Matrix	for	Task	3	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure 24: Confusion Matrix for Task 3 Unmerged Model on entire EMNIST datasetTABLE	

V:	Performance	Metrics	of	Task	2	Unmerged	Model	for	EMNIST	dataset 
 
Figure 24: Confusion Matrix for Task 3 Unmerged Model on entire EMNIST datasetTABLE	

V:	Performance	Metrics	of	Task	2	Unmerged	Model	for	EMNIST	dataset 
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Based	on	the	confusion	matrix	and	performance	metrics	of	task	2	unmerged	

model,	3077	samples	out	of	4000	were	correctly	classified	as	2	and	3520	

samples	out	of	4000	were	correctly	classified	as	3.	The	results	also	show	that	

3466	samples	out	of	4000	were	classified	as	0	and	2416	were	classified	as	1.	

Even	though	the	accuracy	of	identifying	0	and	1	was	low	compared	to	the	

accuracy	of	identifying	0	and	1	when	the	backbone	was	task	1	unmerged	model,	

this	shows	that	some	of	the	learned	features	haven’t	been	forgotten	since	the	

models	have	been	trained	sequentially	in	the	DUA	framework.	

	

	

	

	

	

	

Figure	26:	Confusion	Matrix	for	Task	3	Unmerged	Model	on	entire	EMNIST	dataset	
 
Figure	24:	Confusion	Matrix	for	Task	3	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	26:	Confusion	Matrix	for	Task	3	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	24:	Confusion	Matrix	for	Task	3	Unmerged	Model	on	entire	EMNIST	dataset	
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Based	on	the	confusion	matrix	and	performance	metrics	of	task	3	unmerged	

model,	only	12	out	of	4000	samples	were	correctly	classified	as	4	and	no	

samples	were	classified	as	5	even	though	the	dataset	contained	4000	images	that	

contained	the	digit	5.	Another	observation	is	that	3567	samples	out	of	4000	have	

been	classified	as	0	and	3562	samples	out	of	4000	have	been	classified	as	3.	Task	

3	model	was	trained	on	classifying	4	and	5,	however,	it	performed	poorly	on	

classifying	4	and	5	correctly	compared	to	its	classification	of	0	and	3.	This	

indicates	that	the	output	scores	for	classes	0	and	3	may	be	higher	than	the	

output	scores	for	4	and	5	and	the	model	isn’t	well	calibrated	to	identify	4	and	5.	

TABLE	VI:	Performance	Metrics	of	Task	3	Unmerged	Model	for	EMNIST	dataset 
 
Figure 25: Confusion Matrix for Task 4 Unmerged Model on entire EMNIST datasetTABLE	

VI:	Performance	Metrics	of	Task	3	Unmerged	Model	for	EMNIST	dataset 
 
Figure	27:	Confusion	Matrix	for	Task	4	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure 25: Confusion Matrix for Task 4 Unmerged Model on entire EMNIST datasetTABLE	

VI:	Performance	Metrics	of	Task	3	Unmerged	Model	for	EMNIST	dataset 
 
Figure 25: Confusion Matrix for Task 4 Unmerged Model on entire EMNIST datasetTABLE	

VI:	Performance	Metrics	of	Task	3	Unmerged	Model	for	EMNIST	dataset 
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Based	on	the	confusion	matrix	and	performance	metrics	of	task	4	unmerged	

model,	only	26	out	of	4000	samples	were	correctly	classified	as	6	and	no	

Figure	27:	Confusion	Matrix	for	Task	4	Unmerged	Model	on	entire	EMNIST	dataset	
 
Figure	25:	Confusion	Matrix	for	Task	4	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	27:	Confusion	Matrix	for	Task	4	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	25:	Confusion	Matrix	for	Task	4	Unmerged	Model	on	entire	EMNIST	dataset	

TABLE	VII:	Performance	Metrics	of	Task	4	Unmerged	Model	for	EMNIST	dataset 
 
Figure 26: Confusion Matrix for Task 5 Unmerged Model on entire EMNIST datasetTABLE	

VII:	Performance	Metrics	of	Task	4	Unmerged	Model	for	EMNIST	dataset 
 
Figure	28:	Confusion	Matrix	for	Task	5	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure 26: Confusion Matrix for Task 5 Unmerged Model on entire EMNIST datasetTABLE	

VII:	Performance	Metrics	of	Task	4	Unmerged	Model	for	EMNIST	dataset 
 
Figure 26: Confusion Matrix for Task 5 Unmerged Model on entire EMNIST datasetTABLE	

VII:	Performance	Metrics	of	Task	4	Unmerged	Model	for	EMNIST	dataset 
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samples	were	classified	as	7	even	though	the	dataset	contained	4000	images	that	

contained	the	digit	7.	Just	as	the	observation	made	with	task	3	unmerged	model,	

3511	samples	out	of	4000	have	been	classified	as	0	and	3516	samples	out	of	

4000	have	been	classified	as	3.	Task	4	model	was	trained	on	classifying	6	and	7,	

however,	it	performed	poorly	on	classifying	6	and	7	correctly	compared	to	its	

classification	of	0	and	3.	This	indicates	that	the	output	scores	for	classes	0	and	3	

may	be	higher	than	the	output	scores	for	4	and	5	and	model	isn’t	well	calibrated	

to	identify	6	and	7.	

	Figure	28:	Confusion	Matrix	for	Task	5	Unmerged	Model	on	entire	EMNIST	dataset	
 
Figure	26:	Confusion	Matrix	for	Task	5	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	28:	Confusion	Matrix	for	Task	5	Unmerged	Model	on	entire	EMNIST	dataset	

 
Figure	26:	Confusion	Matrix	for	Task	5	Unmerged	Model	on	entire	EMNIST	dataset	
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Based	on	the	confusion	matrix	and	performance	metrics	of	task	5	unmerged	

model,	only	74	out	of	4000	samples	were	correctly	classified	as	8	and	28	

samples	out	of	4000	were	classified	as	9.	Just	as	the	previous	observations,	there	

is	high	accuracy	for	the	classification	of	0	and	3.		Task	5	model	was	trained	on	

classifying	8	and	9,	however,	it	performed	poorly	on	classifying	8	and	9	correctly	

compared	to	its	classification	of	0	and	3.	This	indicates	that	the	output	scores	for	

classes	0	and	3	may	be	higher	than	the	output	scores	for	8	and	9	and	the	model	

isn’t	well	calibrated	to	identify	8	and	9.	Fig.	29	displays	the	plot	of	average	

accuracies	received	for	each	unmerged	model	on	the	entire	EMNIST	dataset.	The	

low	accuracy	values	for	all	unmerged	models	indicate	that	the	models	are	not	

well	calibrated	to	identifying	the	data	they	were	trained	on.	

TABLE	VIII:	Performance	Metrics	of	Task	5	Unmerged	Model	for	EMNIST	dataset 
 

Figure 27: Plot of average accuracies for all 5 unmerged models with updated classifier 
layers for each modelTABLE	VIII:	Performance	Metrics	of	Task	5	Unmerged	Model	for	

EMNIST	dataset 
 
Figure	29:	Plot	of	average	accuracies	for	all	5	unmerged	models	with	updated	classifier	

layers	for	each	model	
 
Figure 28: Confusion Matrix for Task 2 Merged Model on entire EMNIST datasetFigure 27: 

Plot of average accuracies for all 5 unmerged models with updated classifier layers for each 
modelTABLE	VIII:	Performance	Metrics	of	Task	5	Unmerged	Model	for	EMNIST	dataset 
 

Figure 27: Plot of average accuracies for all 5 unmerged models with updated classifier 
layers for each modelTABLE	VIII:	Performance	Metrics	of	Task	5	Unmerged	Model	for	

EMNIST	dataset 
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iv. 	Merged	Models	with	Classifier	Layers	of	all	Models 

This	is	the	same	as	the	third	robustness	check	that	was	done	on	

unmerged	models.	Fig.	30	and	Table	IX	contains	the	confusion	matrix	and	

performance	metrics	for	task	2	merged	model,	respectively.	Fig.	31	and	Table	X	

contains	the	confusion	matrix	and	performance	metrics	for	task	3	merged	

model,	respectively.	Fig.	32	and	Table	XI	contains	the	confusion	matrix	and	

performance	metrics	for	task	4	merged	model,	respectively.	Fig.	33	and	Table	XII	

contains	the	confusion	matrix	and	performance	metrics	for	task	5	merged	

model,	respectively.	

	

Figure	29:	Plot	of	average	accuracies	for	all	5	unmerged	models	with	updated	classifier	
layers	for	each	model	

 
Figure	28:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	datasetFigure	
27:	Plot	of	average	accuracies	for	all	5	unmerged	models	with	updated	classifier	layers	

for	each	model	
 

Figure	30:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset	
 
Figure	28:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	datasetFigure	
29:	Plot	of	average	accuracies	for	all	5	unmerged	models	with	updated	classifier	layers	

for	each	model	
 
Figure	28:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	datasetFigure	
27:	Plot	of	average	accuracies	for	all	5	unmerged	models	with	updated	classifier	layers	

for	each	model	
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TABLE	IX:	Performance	Metrics	of	Task	2	Merged	Model	for	EMNIST	dataset	

	

The	weights	of	the	task	2	merged	model	are	the	average	of	the	weights	of	task	1	

and	task	2	models.	Based	on	the	confusion	matrix	and	performance	metrics	of	

Figure	x:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	
dataset 

 
Figure 29: Confusion Matrix for Task 3 Merged Model on entire EMNIST datasetFigure	x:	
Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset 

 
Figure	31:	Confusion	Matrix	for	Task	3	Merged	Model	on	entire	EMNIST	dataset	

 
Figure 29: Confusion Matrix for Task 3 Merged Model on entire EMNIST datasetFigure	x:	
Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset 

 
Figure 29: Confusion Matrix for Task 3 Merged Model on entire EMNIST datasetFigure	x:	
Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset 

Figure	30:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	28:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	30:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	28:	Confusion	Matrix	for	Task	2	Merged	Model	on	entire	EMNIST	dataset	
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task	2	merged	model,	3881	samples	out	of	4000	were	classified	as	0,	3580	

samples	out	of	4000	were	classified	as	1,	2193	samples	out	of	4000	were	

classified	as	2	and	3069	samples	out	of	4000	were	classified	as	3.	Even	though	

the	accuracy	for	identifying	0	and	1	is	high,	there	is	a	low	accuracy	for	

identifying	2	and	3.	This	indicates	that	the	model	hasn’t	learned	the	important	

features	to	identify	2	and	3	well	enough	to	be	able	to	classify	them	correctly.	

	

	

	

	

	

Figure	31:	Confusion	Matrix	for	Task	3	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	29:	Confusion	Matrix	for	Task	3	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	31:	Confusion	Matrix	for	Task	3	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	29:	Confusion	Matrix	for	Task	3	Merged	Model	on	entire	EMNIST	dataset	
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	The	weights	of	the	task	3	merged	model	are	the	average	of	the	weights	of	task	1,	

task	2	and	task	3	models.	Based	on	the	confusion	matrix	and	performance	

metrics	of	task	3	merged	model,	3880	samples	out	of	4000	were	classified	as	0,	

3583	samples	out	of	4000	were	classified	as	1,	2201	samples	out	of	4000	were	

classified	as	2	and	3083	samples	out	of	4000	were	classified	as	3.	Task	3	model	

has	been	trained	on	digits	4	and	5,	however,	task	3	merged	model	is	unable	to	

classify	digits	4	and	5.	This	indicates	that	the	model	hasn’t	learned	the	

important	features	to	identify	4	and	5	well	enough	to	be	able	to	classify	them	

correctly.	

	

	

TABLE	X:	Performance	Metrics	of	Task	3	Merged	Model 
 

Figure 30: Confusion Matrix for Task 4 Merged Model on entire EMNIST datasetTABLE	X:	
Performance	Metrics	of	Task	3	Merged	Model 

 
Figure	32:	Confusion	Matrix	for	Task	4	Merged	Model	on	entire	EMNIST	dataset	

 
Figure 30: Confusion Matrix for Task 4 Merged Model on entire EMNIST datasetTABLE	X:	

Performance	Metrics	of	Task	3	Merged	Model 
 

Figure 30: Confusion Matrix for Task 4 Merged Model on entire EMNIST datasetTABLE	X:	
Performance	Metrics	of	Task	3	Merged	Model 
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Figure	32:	Confusion	Matrix	for	Task	4	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	30:	Confusion	Matrix	for	Task	4	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	32:	Confusion	Matrix	for	Task	4	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	30:	Confusion	Matrix	for	Task	4	Merged	Model	on	entire	EMNIST	dataset	

TABLE	XI:	Performance	Metrics	of	Task	4	Merged	Model 
 
Figure 31: Confusion Matrix for Task 5 Merged Model on entire EMNIST datasetTABLE	XI:	

Performance	Metrics	of	Task	4	Merged	Model 
 

Figure	33:	Confusion	Matrix	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	
 
Figure 31: Confusion Matrix for Task 5 Merged Model on entire EMNIST datasetTABLE	XI:	

Performance	Metrics	of	Task	4	Merged	Model 
 
Figure 31: Confusion Matrix for Task 5 Merged Model on entire EMNIST datasetTABLE	XI:	

Performance	Metrics	of	Task	4	Merged	Model 
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The	results	of	task	4	and	task	5	merged	models	don’t	showcase	any	

further	improvement	when	compared	to	task	3	merged	model	results.	Fig.	34	

displays	the	plot	of	average	accuracies	received	for	each	merged	model	on	the	

Figure	33:	Confusion	Matrix	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	31:	Confusion	Matrix	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	33:	Confusion	Matrix	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	31:	Confusion	Matrix	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	

TABLE	XII:	Performance	Metrics	of	Task	5	Merged	Model 
 

 
Figure 32: Plot of average accuracies of all 4 merged modelsTABLE	XII:	Performance	

Metrics	of	Task	5	Merged	Model 
 

 
Figure	34:	Plot	of	average	accuracies	of	all	4	merged	models	

 
Figure 33: Plot of average accuracies of all 4 unmerged modelsFigure 32: Plot of average 
accuracies of all 4 merged modelsTABLE	XII:	Performance	Metrics	of	Task	5	Merged	

Model 
 

 
Figure 32: Plot of average accuracies of all 4 merged modelsTABLE	XII:	Performance	

Metrics	of	Task	5	Merged	Model 
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entire	EMNIST	dataset.	These	low	accuracy	values	are	expected	since	the	

unmerged	model	counterparts	also	show	low	accuracy	values.	

	

	

	

	

	

	

	

	

	

	

b) Robustness	Check	of	MIT	Indoor	Scenes	Experiment 

The	first	robustness	check	that	was	done	was	to	see	how	well	all	

unmerged	models	performed	on	unseen	task	data.	Appropriate	task	data	was	fed	

into	corresponding	task	models	in	batches	of	32	and	an	average	accuracy	was	

computed	after	all	the	data	had	been	processed.	The	supplementary	section	of	

this	report	showcases	the	performance	metrics	of	all	unmerged	models	on	

unseen	task	data.	Fig.	35	provides	the	average	accuracy	values	for	unmerged	

models	that	were	received	on	the	newly	created	scenes	dataset.	Based	on	the	

results,	the	average	accuracy	is	low	for	all	tasks	on	unseen	data.	

Figure	34:	Plot	of	average	accuracies	of	all	4	merged	models	
 

Figure	33:	Plot	of	average	accuracies	of	all	4	unmerged	modelsFigure	32:	Plot	of	
average	accuracies	of	all	4	merged	models	

 
Figure	35:	Plot	of	average	accuracies	of	all	4	unmerged	models	

 
Figure	34:	Plot	of	average	accuracies	of	all	3	merged	modelsFigure	33:	Plot	of	average	
accuracies	of	all	4	unmerged	modelsFigure	34:	Plot	of	average	accuracies	of	all	4	

merged	models	
 

Figure	33:	Plot	of	average	accuracies	of	all	4	unmerged	modelsFigure	32:	Plot	of	
average	accuracies	of	all	4	merged	models	
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The	second	robustness	check	was	to	verify	that	each	merged	model	

performed	correctly	on	its	corresponding	task.	As	a	brief	recap,	each	parameter	

in	a	merged	model	contains	the	mean	parameter	value	of	its	previous	tasks.	Like	

how	the	first	robustness	check	was	done,	appropriate	task	data	was	fed	into	

corresponding	task	merged	models	in	batches	of	32	and	an	average	accuracy	

was	computed	after	all	the	data	had	been	processed.	The	supplementary	section	

of	this	report	showcases	the	performance	metrics	of	all	merged	models	on	

unseen	task	data	Fig.	36	provides	the	average	accuracy	values	for	all	merged	

models	that	were	received	on	the	new	scenes’	dataset	for	iteration	5.		

	

	

Figure	35:	Plot	of	average	accuracies	of	all	4	unmerged	models	
 
Figure	34:	Plot	of	average	accuracies	of	all	3	merged	modelsFigure	33:	Plot	of	average	

accuracies	of	all	4	unmerged	models	
 

Figure	36:	Plot	of	average	accuracies	of	all	3	merged	models	
 

Figure	35:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	
Indoor	Scene	RecognitionFigure	34:	Plot	of	average	accuracies	of	all	3	merged	

modelsFigure	35:	Plot	of	average	accuracies	of	all	4	unmerged	models	
 
Figure	34:	Plot	of	average	accuracies	of	all	3	merged	modelsFigure	33:	Plot	of	average	

accuracies	of	all	4	unmerged	models	
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According	to	Fig.	36,	the	average	accuracy	for	task	2	merged	model	is	

approximately	the	same	compared	to	its	unmerged	counterpart	in	Fig.	30.	The	

average	accuracies	for	task	3	and	task	4	merged	models	reduced	significantly	

compared	to	its	unmerged	counterparts.	This	indicates	that	information	may	

have	been	lost	during	the	merging	process	to	correctly	identify	the	appropriate	

class.	

Additional	experiments	were	performed	to	check	for	robustness.	The	DUA	

framework	was	not	compared	with	any	other	federated	learning	frameworks	or	

baseline	for	the	MIT	indoor	scenes	experiment.	Based	on	this	observation,	a	

centralized	model,	FedAvg	[7],	and	FedProx	[15]	were	utilized	to	create	a	

baseline	for	the	DUA	framework	for	the	MIT	indoor	scenes	experiment.		

Figure	36:	Plot	of	average	accuracies	of	all	3	merged	models	
 

Figure	35:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	
Indoor	Scene	RecognitionFigure	34:	Plot	of	average	accuracies	of	all	3	merged	models	

 
Figure	37:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	

Indoor	Scene	Recognition	
 

Figure	35:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	
Indoor	Scene	RecognitionFigure	36:	Plot	of	average	accuracies	of	all	3	merged	models	

 
Figure	35:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	

Indoor	Scene	RecognitionFigure	34:	Plot	of	average	accuracies	of	all	3	merged	models	
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The	MIT	indoor	scenes	dataset	was	used	in	three	different	data	distributions,	

homogeneous,	heterogeneous,	and	random.	In	homogeneous	data	distribution,	

each	user	is	assigned	the	same	number	of	images	depending	upon	the	total	

number	of	images	and	number	of	users.	For	example,	if	there	are	10	images	and	

5	users,	each	user	gets	assigned	2	images.	In	heterogeneous	data	distribution,	

each	user	will	get	the	same	fraction	of	images	from	all	categories.	For	example,	

user	1	is	allocated	30%	of	images	from	store,	home,	public	and	leisure	super	

categories	from	the	MIT	indoor	scene	dataset.	In	random	data	distribution,	a	

user	can	get	a	random	number	of	images	from	a	random	category	and	this	data	

distribution	closely	resembles	a	real-world	setting.	In	all	three	data	

distributions,	each	user	has	unique	images.	All	three	data	distributions	were	

utilized	both	in	FedAvg	[7]	and	FedProx	[15]	frameworks.		

To	implement	federated	learning	environments	for	indoor	scenes	

predictions,	the	FedAvg	and	FedProx	implementations	from	the	FedMA	GitHub	

repo	[18]	was	used	with	minor	modifications.	The	MIT	indoor	scenes	dataset	

was	partitioned	between	5	users	using	all	three	data	distribution	methods.	

Compared	to	the	DUA	framework,	the	implementations	of	FedAvg	[7]	and	

FedProx	[15]	included	the	working	place	category	in	the	MIT	indoor	scenes	

dataset.	

i. Homogeneous	Data	Distribution:	Each	user	received	20%	of	images	

from	each	category	in	the	MIT	indoor	scenes	dataset.	
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ii. Heterogeneous	Data	Distribution:	Even	though	each	user	is	

allocated	images	from	all	categories,	the	proportion	of	images	that	

each	user	receives	from	all	categories	is	different.	For	example,	

user	1	receives	20%	of	images	from	all	categories,	user	2	receives	

30%	of	images	from	all	categories,	user	3	receives	10%	of	images	

from	all	categories,	user	4	receives	15%	of	images	from	all	

categories,	and	lastly,	user	5	receives	25%	of	images	from	all	

categories. 

iii. Random	Data	Distribution:	Each	user	receives	a	random	number	of	

images	from	any	category	in	the	MIT	indoor	scenes	dataset.	

The	same	VGG11	architecture	that	was	used	in	the	DUA	framework	[13]	for	the	

indoor	scenes	experiments	was	used	to	build	the	model.	Each	user	model	was	

initialized	with	this	VGG11	model	with	a	few	frozen	layers.	Layers	till	the	

penultimate	convolutional	layer	(‘features	16’)	were	frozen	to	preserve	the	low-

level	features	learned	from	ImageNet.	Each	user	model	was	trained	on	local	data.	

The	minibatch	training	involved	25	epochs	while	taking	advantage	of	data	

augmentation	due	to	the	comparatively	limited	training	dataset	size.	PyTorch	

implementations	of	cross	entropy	loss	function	and	SGD	were	used	for	training.	

Once	the	local	training	phase	was	completed,	the	FedAvg	[7]	and	FedProx	

[15]	were	implemented	using	the	user	models.	A	notable	change	from	the	

original	implementation	of	these	frameworks	is	that	at	each	communication	
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round,	instead	of	selecting	a	fraction	of	users	at	random	for	local	training,	all	5	

users	in	this	implementation	participated	in	every	communication	round.		

Fig.	37	showcases	a	plot	comparing	the	average	accuracies	of	all	

federated	learning	frameworks	on	the	MIT	indoor	scene	dataset.	Based	on	the	

results	shown	in	Fig.	37,	FedProx	[15]	and	FedAvg	[7]	with	homogeneous	data	

distribution	showed	the	highest	accuracy	among	all	the	federated	learning	

frameworks,	including	DUA.	Data	distribution	and	user	personalization	

differentiate	DUA	from	the	rest	of	the	frameworks	which	is	why	it’s	a	

comparable	candidate	with	the	rest	of	the	frameworks.	

	Figure	37:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	
Indoor	Scene	Recognition	

 
Figure	35:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	

Indoor	Scene	Recognition	
 

Figure	37:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	
Indoor	Scene	Recognition	

 
Figure	35:	Plot	of	average	accuracies	for	Federated	Learning	(FL)	frameworks	for	
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VII. METHODOLOGY	

Based	on	the	results	of	the	preliminary	research	that	have	been	shown	in	the	

previous	section,	the	DUA	framework	doesn’t	appear	to	work	well	or	consider	new	

unseen	tasks.	In	a	real-world	setting,	user	data	is	constantly	evolving.	In	other	words,	

there	is	no	way	to	predict	the	data	that	a	user	device	will	contain,	and	it	will	be	a	

violation	of	the	user's	privacy	to	know	beforehand	what	the	user	data	might	be.	For	this	

purpose,	it’s	important	that	the	DUA	framework	considers	unseen	tasks	so	it	can	be	

adaptable	to	new	data.	With	that	being	said,	the	goal	of	the	proposed	methodology	is	to	

address	the	issue	of	performance	on	unseen	tasks	by	the	DUA	and	improve	its	

performance.	There	will	be	two	phases	in	this	research.	Phase	1	will	be	focused	on	

creating	new	tasks	with	overlapped	datasets.	In	the	original	DUA	experiment,	the	server	

trained	models	were	trained	on	unique	subsets	of	the	entire	dataset.	No	two	models	

shared	the	same	subset	of	training	data.	In	our	experiment,	we	decided	to	let	two	

models	share	the	same	subset	of	data	because	the	culmination	of	the	features	learned	

by	each	model	can	help	to	better	identify	tasks.		After	a	set	of	new	unmerged	and	

merged	models	have	been	created,	these	models	will	be	evaluated	on	unseen	EMNIST	

data.	In	theory,	the	last	merged	model	is	trained	for	all	previous	tasks	and	current	task.	

With	that	being	said,	the	classifier	layer	of	the	last	merged	model	will	be	replaced	with	

the	classifier	layer	of	all	the	models	on	the	assumption	that	the	classifier	layer	of	each	

model	is	trained	well	to	identify	the	task	it	was	trained	on.	If	the	last	merged	model	is	

trained	for	all	tasks	and	each	classifier	layer	can	identify	the	task	it	was	trained	on,	any	
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data	that	is	fed	into	this	model	configuration	should	predict	tasks	correctly.	Phase	2	will	

be	focused	on	reconstructing	the	last	merged	model	into	multiple	configurations	and	

retraining	the	new	configured	models	to	determine	which	model	improved	

performance.	As	the	preliminary	research	has	shown,	the	findings	on	the	number	

datasets	experiments	generalizes	to	the	MIT	indoor	scenes	dataset.	Hence,	the	rest	of	

this	thesis	will	focus	on	the	numbers	experiment.	

A. Implementation	Plan	for	Numbers	Experiment	

1) Phase	1	

1. Create	tasks	with	overlapped	datasets	using	MNIST	and	SVHN	datasets	as	

shown	in	Table	XIII	for	both	training	on	the	server	and	collecting	importance	

weights	from	user	devices.	

	

TASKS	 SUBSET	OF	DIGITS	
1	 0,	1	
2	 1,	2	
3	 2,	3	
4	 3,	4	
5	 4,	5	
6	 5,	6	
7	 6,	7	
8	 7,	8	
9	 8,	9	
10	 9,	0	

	

2. Train	each	of	the	10	tasks	using	the	DUA	framework	resulting	in	10	

unmerged	models.	

TABLE	XIII:	Tasks	of	Overlapped	Datasets 
 

 
Figure 34: Model Configuration 1TABLE	XIII:	Tasks	of	Overlapped	Datasets 

 
 

Figure	34:	Model	Configuration	1	
 

 
Figure 36: Model Configuration 1Figure 34: Model Configuration 1TABLE	XIII:	Tasks	of	

Overlapped	Datasets 
 

 
Figure 34: Model Configuration 1TABLE	XIII:	Tasks	of	Overlapped	Datasets 
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3. Calculate	the	importance	weights	from	the	user	data	using	the	DUA	

framework	

4. Merge	each	task	model,	except	for	the	first	one,	resulting	in	a	total	of	9	

merged	models.	

5. Pre-process	the	EMNIST	digits	dataset	by	applying	a	series	of	transforms.	

6. Divide	the	EMNIST	digits	dataset	into	the	same	10	tasks	as	defined	in	Table	

XIII.	

7. Feed	the	unseen	EMNIST	digits	task	data	into	the	server	trained	models	and	

evaluate	how	each	unmerged	model	performs	on	unseen	data.	

8. Repeat	the	previous	step	for	the	merged	models	for	user	1	and	evaluate	how	

each	merged	model	performs	on	unseen	data.	

9. Replace	the	head	layer	of	each	merged	model	with	the	head	layer	of	all	

models.	

10. Feed	the	unseen	EMNIST	digits	data	into	each	corresponding	newly	

configured	model	and	evaluate	how	each	merged	model	performs	on	unseen	

data.	

2) 	Phase	2	

1. Create	a	new	configuration	(Configuration	1)	for	the	merged	model	of	task	

10	by	replacing	its	classifier	layer	with	classifier	layers	of	all	the	models	as	

shown	in	Fig.	38.	
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a. Note	that	the	classifier	layer	of	the	newly	configured	task	10	

merged	model	will	contain	20	output	nodes.	

2. Each	digit	in	the	range	0	to	9	contains	2	output	nodes	in	the	classifier	layer.	

The	average	value	of	the	2	output	nodes	will	be	taken	for	each	digit.	There	

should	be	10	output	probabilities	at	the	end.	The	maximum	among	these	10	

output	probabilities	will	be	the	prediction	of	the	model.	See	Fig.	38.	

	 Figure	34:	Model	Configuration	1	
 

 
Figure	36:	Model	Configuration	1Figure	34:	Model	Configuration	1	

 
 

Figure	38:	Model	Configuration	1	
 

 
Figure	37:	Training	head	layer	only	of	model	configuration	1Figure	36:	Model	

Configuration	1Figure	34:	Model	Configuration	1	
 

 
Figure	36:	Model	Configuration	1Figure	34:	Model	Configuration	1	

 

Figure	38:	Model	Configuration	1	
 

 
Figure	37:	Training	head	layer	only	of	model	configuration	1Figure	36:	Model	

Configuration	1	
 

 
Figure	39:	Training	head	layer	only	of	model	configuration	1	

 
 

Figure	39:	Model	Configuration	2Figure	37:	Training	head	layer	only	of	model	
configuration	1Figure	38:	Model	Configuration	1	

 
 

Figure	37:	Training	head	layer	only	of	model	configuration	1Figure	36:	Model	
Configuration	1	
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3. 	Train	only	the	head	layer	of	Configuration	1	by	freezing	the	parameters	of	

task	10	merged	model	

	
	

4. Configuration	2	is	the	same	as	configuration	with	only	one	difference.	The	

maximum	value	of	2	output	nodes	will	be	taken	for	each	digit.	The	maximum	

among	the	10	output	probabilities	will	be	the	prediction	of	the	model.	See	

Fig.	40.	

	

Figure	39:	Training	head	layer	only	of	model	configuration	1	
 

 
Figure	39:	Model	Configuration	2Figure	37:	Training	head	layer	only	of	model	

configuration	1	
 

 
Figure	40:	Model	Configuration	2	

 
 

Figure	40:	Training	head	layer	only	of	model	configuration	2Figure	39:	Model	
Configuration	2Figure	39:	Training	head	layer	only	of	model	configuration	1	

 
 

Figure	39:	Model	Configuration	2Figure	37:	Training	head	layer	only	of	model	
configuration	1	
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5. Train	only	the	head	layer	of	Configuration	2	by	freezing	the	parameters	of	

task	10	merged	model	

Figure	40:	Model	Configuration	2	
 

 
Figure	40:	Training	head	layer	only	of	model	configuration	2Figure	39:	Model	

Configuration	2	
 

 
Figure	41:	Training	head	layer	only	of	model	configuration	2	

 
 

Figure	41:	Model	Configuration	3Figure	40:	Training	head	layer	only	of	model	
configuration	2Figure	40:	Model	Configuration	2	

 
 

Figure	40:	Training	head	layer	only	of	model	configuration	2Figure	39:	Model	
Configuration	2	
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6. Configuration	3	for	the	merged	model	of	task	10	is	like	Configuration	2	with	

one	difference.	Instead	of	taking	the	maximum	value	among	two	output	

nodes,	Configuration	3	takes	the	sum	of	each	class	which	results	in	10	sum	

values.	The	maximum	value	among	these	10	values	is	taken	as	the	

prediction.	Configuration	3	is	shown	in	Fig.	42.	

	

	

	

Figure	41:	Training	head	layer	only	of	model	configuration	2	
 

 
Figure	41:	Model	Configuration	3Figure	40:	Training	head	layer	only	of	model	

configuration	2	
 

 
Figure	42:	Model	Configuration	3	

 
 

Figure	42:	Training	head	layer	only	of	model	configuration	3Figure	41:	Model	
Configuration	3Figure	41:	Training	head	layer	only	of	model	configuration	2	

 
 

Figure	41:	Model	Configuration	3Figure	40:	Training	head	layer	only	of	model	
configuration	2	
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7. Train	only	the	head	layer	of	Configuration	3	by	freezing	the	parameters	of	

task	10	merged	model	

Figure	42:	Model	Configuration	3	
 

 
Figure	42:	Training	head	layer	only	of	model	configuration	3Figure	41:	Model	

Configuration	3	
 

 
Figure	43:	Training	head	layer	only	of	model	configuration	3	

 
 

Figure	43:	Model	configuration	4Figure	42:	Training	head	layer	only	of	model	
configuration	3Figure	42:	Model	Configuration	3	

 
 

Figure	42:	Training	head	layer	only	of	model	configuration	3Figure	41:	Model	
Configuration	3	

 



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

76 
 
 
 
 

	

	

	
8. Create	a	new	configuration	(Configuration	4)	for	the	merged	model	of	task	

10	by	replacing	its	classifier	layer	with	a	new	linear	layer	of	10	nodes	as	

shown	in	Fig.	44.	

	

Figure	43:	Training	head	layer	only	of	model	configuration	3	
 

 
Figure	43:	Model	configuration	4Figure	42:	Training	head	layer	only	of	model	

configuration	3	
 

 
Figure	44:	Model	configuration	4	

 
 

Figure	44:	Training	linear	layer	only	of	model	configuration	4Figure	43:	Model	
configuration	4Figure	43:	Training	head	layer	only	of	model	configuration	3	

 
 

Figure	43:	Model	configuration	4Figure	42:	Training	head	layer	only	of	model	
configuration	3	
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9. Train	the	final	layer	of	Configuration	4	by	freezing	the	parameters	of	the	

task	10	merged	model	

	

	

	

	

	

Figure	44:	Model	configuration	4	
 

 
Figure	44:	Training	linear	layer	only	of	model	configuration	4Figure	43:	Model	

configuration	4	
 

 
Figure	45:	Training	linear	layer	only	of	model	configuration	4	

 
 

Figure	44:	Training	linear	layer	only	of	model	configuration	4Figure	44:	Model	
configuration	4	

 
 

Figure	44:	Training	linear	layer	only	of	model	configuration	4Figure	43:	Model	
configuration	4	
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10. Create	a	new	configuration	(Configuration	5)	for	the	merged	model	of	task	

10	by	replacing	its	classifier	layer	with	the	classifier	layer	of	all	models	and	

inserting	a	new	linear	layer	of	10	nodes	as	shown	in	Fig.	46.	

Figure	45:	Training	linear	layer	only	of	model	configuration	4	
 

 
Figure	44:	Training	linear	layer	only	of	model	configuration	4	

 
 

Figure	46:	Model	configuration	5	
 

 
Figure	46:	Training	final	layer	only	of	model	configuration	5Figure	45:	Model	
configuration	5Figure	45:	Training	linear	layer	only	of	model	configuration	4	

 
 

Figure	44:	Training	linear	layer	only	of	model	configuration	4	
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11. 	Train	the	final	layer	of	Configuration	5	by	freezing	the	parameters	of	the	

task	10	merged	model	and	the	head	layer	

	

	

Figure	46:	Model	configuration	5	
 

 
Figure	46:	Training	final	layer	only	of	model	configuration	5Figure	45:	Model	

configuration	5	
 

 
Figure	47:	Training	final	layer	only	of	model	configuration	5	

 
 

Figure	46:	Training	final	layer	only	of	model	configuration	5Figure	46:	Model	
configuration	5	

 
 

Figure	46:	Training	final	layer	only	of	model	configuration	5Figure	45:	Model	
configuration	5	
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12. Train	the	final	layer	and	head	layer	of	Configuration	5	by	freezing	the	

parameters	of	the	task	10	merged	model	(Configuration	6)	

	
	

	

	

	

	

Figure	47:	Training	final	layer	only	of	model	configuration	5	
 

 
Figure	46:	Training	final	layer	only	of	model	configuration	5	

 
 

Figure	47:	Training	final	layer	only	of	model	configuration	5	
 

 
Figure	46:	Training	final	layer	only	of	model	configuration	5	

 



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

81 
 
 
 
 

	

	

VIII. EXPERIMENTAL	EVALUATION	

A. Evaluation	Results	of	Numbers	Experiment	

1) Phase	1:	The	training	procedure	of	these	overlapped	tasks	is	the	same	as	the		

training	done	on	non-overlapped	tasks.	At	the	end	of	the	execution	of	the	DUA	

framework	on	overlapped	datasets,	there	are	10	unmerged	and	9	merged	models.	

It’s	important	to	evaluate	how	these	models	work	on	unseen	data	prior	to	the	rest	of	

the	experiment.	The	robustness	of	all	these	models	will	be	evaluated	in	a	similar	

way	that	was	done	on	models	trained	on	non-overlapped	datasets.	Fig.	49	

Figure	48:	Training	head	and	final	layers	only	of	model	configuration	6	
 

 
Figure	45:	Confusion	matrices	of	all	10	unmerged	modelsFigure	47:	Training	head	and	

final	layers	only	of	model	configuration	6	
 

 
Figure	49:	Confusion	matrices	of	all	10	unmerged	models	

 
 
Figure	46:	Plot	of	average	accuracies	of	10	unmerged	modelsFigure	45:	Confusion	
matrices	of	all	10	unmerged	modelsFigure	48:	Training	head	and	final	layers	only	of	

model	configuration	6	
 

 
Figure	45:	Confusion	matrices	of	all	10	unmerged	modelsFigure	47:	Training	head	and	

final	layers	only	of	model	configuration	6	
 



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

82 
 
 
 
 

showcases	the	confusion	matrices	for	all	10	unmerged	models	followed	by	Fig,	50	

which	contains	the	average	accuracies	of	all	models.	

	

	

	

	

	

	



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

83 
 
 
 
 

	

	

	 Figure	49:	Confusion	matrices	of	all	10	unmerged	models	
 

 
Figure	46:	Plot	of	average	accuracies	of	10	unmerged	modelsFigure	45:	Confusion	

matrices	of	all	10	unmerged	models	
 

 
Figure	50:	Plot	of	average	accuracies	of	10	unmerged	models	

 
 

Figure	47:	Confusion	matrices	of	all	9	merged	modelsFigure	46:	Plot	of	average	



PRIVACY PRESERVING FOR MULTIPLE COMPUTER VISION TASKS 

84 
 
 
 
 

	 	

	

	

	

	

	

	

	

	

Based	on	the	results	shown	in	Fig.	49	and	Fig.	50,	unmerged	models	of	

task	1,	task	2,	task	3,	task	4,	and	task	5	have	a	high	accuracy	of	predicting	the	

subset	of	digits	it	was	trained	on	by	testing	it	on	corresponding	unseen	EMNIST	

dataset.	A	few	key	observations:	

● 3969	samples	were	correctly	classified	as	0	by	task	1	unmerged	

model	whereas	only	99	samples	were	correct	classified	as	0	by	

task	10	unmerged	model	

o Indicates	that	task	10	unmerged	model	hasn’t	learned	the	

general	structure	of	identifying	a	digit	as	0	or	9	

● 1148	samples	were	correctly	classified	as	6	by	task	6	unmerged	

model	whereas	2589	samples	were	classified	as	6	by	task	7	

unmerged	model	

Figure	50:	Plot	of	average	accuracies	of	10	unmerged	models	
 

 
Figure	47:	Confusion	matrices	of	all	9	merged	modelsFigure	46:	Plot	of	average	

accuracies	of	10	unmerged	models	
 

 
Figure	51:	Confusion	matrices	of	all	9	merged	models	

 
 
Figure	48:	Average	accuracies	of	all	9	merged	modelsFigure	47:	Confusion	matrices	of	
all	9	merged	modelsFigure	50:	Plot	of	average	accuracies	of	10	unmerged	models	

 
 

Figure	47:	Confusion	matrices	of	all	9	merged	modelsFigure	46:	Plot	of	average	
accuracies	of	10	unmerged	models	
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o Indicates	that	task	6	unmerged	model	hasn’t	learned	the	

general	structure	of	identifying	a	digit	as	5	or	6	

o Also,	indicates	that	task	7	unmerged	model	has	learned	a	

better	general	structure	of	identifying	a	digit	as	6	when	

model	was	trained	on	6	and	7	

● 2541	samples	were	correctly	classified	as	7	by	task	7	unmerged	

model	whereas	only	775	samples	were	classified	as	7	by	task	8	

unmerged	model	

o Indicates	that	task	8	unmerged	model	hasn’t	learned	the	

general	structure	of	identifying	a	digit	as	7	or	8	

The	same	robustness	check	that	was	performed	for	unmerged	models	

was	also	performed	for	merged	models.	Fig.	51	showcases	the	confusion	

matrices	for	all	9	merged	models	followed	by	Fig.	52	which	contains	the	average	

accuracies	of	all	models.	
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Figure	51:	Confusion	matrices	of	all	9	merged	models	
 

 
Figure	48:	Average	accuracies	of	all	9	merged	modelsFigure	47:	Confusion	matrices	of	

all	9	merged	models	
 

 
Figure	52:	Average	accuracies	of	all	9	merged	models	

 
 
Figure	49:	Model	architecture	of	replaced	classifier	layerFigure	48:	Average	accuracies	

of	all	9	merged	modelsFigure	51:	Confusion	matrices	of	all	9	merged	models	
 

 
Figure	48:	Average	accuracies	of	all	9	merged	modelsFigure	47:	Confusion	matrices	of	

all	9	merged	models	
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As	the	last	robustness	check,	the	classifier	layer	of	each	merged	model	

will	be	replaced	with	the	classifier	layers	of	all	merged	models	as	shown	in	Fig.	

53.	Unlike	in	the	non-overlapped	experiment,	placing	classifier	layers	of	all	

merged	models	in	overlapped	experiment	will	yield	20	output	nodes	instead	of	

10.	The	question	that	arises	then	is	how	to	classify	digits	0	to	9?	Recall	that	this	

experiment	is	implemented	with	an	overlapped	dataset.	In	other	words,	two	

output	nodes	are	trained	to	classify	the	same	number	as	in	Fig.	53.	To	classify	a	

digit	between	0	and	9,	the	average	value	of	the	two	output	nodes	that	are	trained	

to	classify	the	same	number	are	taken.	After	all	average	values	are	computed,	

these	10	values	are	fed	through	a	SoftMax	function	to	compare	the	probabilities	

Figure	52:	Average	accuracies	of	all	9	merged	models	
 

 
Figure	49:	Model	architecture	of	replaced	classifier	layerFigure	48:	Average	accuracies	

of	all	9	merged	models	
 

 
Figure	53:	Model	architecture	of	replaced	classifier	layer	

 
 
Figure	50:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	

on	entire	EMNIST	datasetFigure	49:	Model	architecture	of	replaced	classifier	
layerFigure	52:	Average	accuracies	of	all	9	merged	models	

 
 
Figure	49:	Model	architecture	of	replaced	classifier	layerFigure	48:	Average	accuracies	

of	all	9	merged	models	
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of	the	outputs.	The	prediction	of	the	model	will	be	taken	as	the	index	of	the	

maximum	of	the	10	output	probabilities.	

	

	

The	confusion	matrix	and	performance	metrics	of	task	2	merged	model	

shown	in	Fig.	54(a)	and	Fig.	54(b),	respectively.	The	confusion	matrix	and	

performance	metrics	of	task	3	merged	model	shown	in	Fig.	55(a)	and	Fig.	55(b),	

respectively.	

	

Figure	53:	Model	architecture	of	replaced	classifier	layer	
 

 
Figure	50:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	
on	entire	EMNIST	datasetFigure	49:	Model	architecture	of	replaced	classifier	layer	

 
 
Figure	54:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	

on	entire	EMNIST	dataset	
 
Figure	50:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	
on	entire	EMNIST	datasetFigure	53:	Model	architecture	of	replaced	classifier	layer	

 
 
Figure	50:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	
on	entire	EMNIST	datasetFigure	49:	Model	architecture	of	replaced	classifier	layer	
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(a)	

	

(b)	

	Figure	54:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	
on	entire	EMNIST	dataset	

 
Figure	50:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	Model	

on	entire	EMNIST	dataset	
 
Figure	55:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	3	Merged	Model	

 
Figure	51:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	3	Merged	

ModelFigure	54:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	2	Merged	
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Based	on	the	results	shown	in	the	confusion	matrix	and	performance	

metrics	of	task	2	merged	model,	the	model	had	high	accuracies	for	predicting	

classes	0,	1	and	2.	Among	these	three	classifications,	class	1	had	the	highest	

accuracy.	The	accuracy	values	for	the	rest	of	the	classes	were	substantially	low.	

This	is	expected	behavior	since	the	merged	model	of	task	2	only	contains	the	

weighted	average	of	both	task	1	and	task	2.	The	overall	accuracy	on	all	data	is	

0.2849.	

(a)	
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(b)	

	

The	results	for	task	3	merged	model	are	very	similar	to	the	results	for	

task	2	merged	model.	For	instance,	this	merged	model	also	had	high	accuracies	

for	predicting	classes	0,	1	and	2.	Among	these	three	classifications,	class	1	had	

the	highest	accuracy.	There	was	a	slight	improvement	in	accuracy	for	identifying	

class	2	correctly.	The	accuracy	values	for	the	rest	of	the	classes	were	

substantially	low.	The	slight	improvement	in	identifying	class	2	correctly	could	

Figure	55:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	3	Merged	Model	
 
Figure	51:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	3	Merged	Model	

 
Figure	56:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	1	

on	entire	EMNIST	dataset	
 
Figure	52:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	1	
on	entire	EMNIST	datasetFigure	55:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	

for	Task	3	Merged	Model	
 
Figure	51:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	3	Merged	Model	
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be	because	task	3	merged	model	contains	weighted	average	of	task	1,	task	2,	and	

task	3.	The	overall	accuracy	on	all	data	is	0.2853.	

The	confusion	matrices	and	performance	of	the	rest	of	the	merged	

models	can	be	found	in	the	supplementary	section.	After	examining	the	results	of	

each	merged	model	closely,	the	overall	accuracy	on	all	data	stays	close	to	the	

same	value.	

2) Phase	2	

The	task	10	merged	model	was	used	as	the	backbone	of	all	the	new	model	

configurations.		

a) Model	Configuration	1:	The	parameters	of	the	backbone	architecture	were	

kept	frozen	and	only	the	head	layer	was	trained.	At	the	end	of	the	execution,	

a	model	with	the	best	validation	accuracy	of	0.6254	was	received.	Fig.	56	

displays	the	confusion	matrix	and	performance	metrics	of	testing	this	model	

on	EMNIST	dataset.	The	overall	accuracy	is	0.5860.	

(a) 
 
(a) 
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(b)	

	

	

b) Model	Configuration	2:	The	parameters	of	the	backbone	architecture	were	

kept	frozen	and	only	the	head	layer	was	training.	At	the	end	of	the	execution,	

a	model	with	the	best	validation	accuracy	of	0.6471	was	received.	Fig.	57	

displays	the	confusion	matrix	and	performance	metrics	of	testing	this	model	

on	EMNIST	dataset.	The	overall	accuracy	on	all	data	is	0.5891.	

	

Figure	56:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	1	
on	entire	EMNIST	dataset	

 
Figure	52:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	1	

on	entire	EMNIST	dataset	
 
Figure	57:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	2	

on	entire	EMNIST	dataset	
 
Figure	53:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	2	
on	entire	EMNIST	datasetFigure	56:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	

for	Model	Configuration	1	on	entire	EMNIST	dataset	
 
Figure	52:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	1	

on	entire	EMNIST	dataset	
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(a)	

	
(b)	

	 Figure	57:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	2	
on	entire	EMNIST	dataset	

 
Figure	53:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	2	

on	entire	EMNIST	dataset	
 
Figure	58:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	3	

on	entire	EMNIST	dataset	
 
Figure	54:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	3	
on	entire	EMNIST	datasetFigure	57:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	
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c) Model	Configuration	3:	This	configuration	was	trained	in	the	same	manner	as	

Configuration	1.	At	the	end	of	the	execution,	a	model	with	the	best	validation	

accuracy	of	0.6247	was	received.	Fig.	58	displays	the	confusion	matrix	and	

performance	metrics	of	testing	this	model	on	EMNIST	dataset.	The	overall	

accuracy	on	all	data	is	0.5878.	

(a)	
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(b)	

	

	

d) Model	Configuration	4:	After	training	the	final	layer	while	keeping	the	

parameters	of	the	backbone	frozen,	a	model	with	the	best	validation	accuracy	

of	0.6243	was	retrieved.	Fig.	59	displays	the	confusion	matrix	and	

performance	metrics	of	testing	this	model	on	EMNIST	dataset.	The	overall	

accuracy	on	all	data	is	0.5862.	

Figure	58:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	3	
on	entire	EMNIST	dataset	

 
Figure	54:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	3	

on	entire	EMNIST	dataset	
 
Figure	59:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	4	

on	entire	EMNIST	dataset	
 
Figure	55:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	4	
on	entire	EMNIST	datasetFigure	58:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	

for	Model	Configuration	3	on	entire	EMNIST	dataset	
 
Figure	54:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	3	

on	entire	EMNIST	dataset	
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(a)	

	

	

	

	

	

	

	

	

	

	

(b)	

Figure	59:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	4	
trained	on	head	layer	only	on	entire	EMNIST	dataset	

 
Figure	56:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	5	

trained	on	head	layer	only	on	entire	EMNIST	dataset	
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e) Model	Configuration	5:	This	configuration	was	trained	in	two	different	ways	

to	see	which	training	method	would	produce	a	good	result.	 

i. In	the	first	training	method,	the	final	layer	was	the	only	one	that	

was	trained	while	keeping	the	parameters	of	the	backbone	frozen.	

This	resulted	in	a	model	with	the	best	validation	accuracy	of	

0.4846.	Fig.	60	displays	the	confusion	matrix	and	performance	

metrics	of	testing	this	model	on	EMNIST	dataset.	The	overall	

accuracy	on	all	data	is	0.4592.	

(a)	
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(b)	

	

	

ii. In	the	second	training	method,	the	head	layer	and	final	layer	were	

the	only	two	layers	that	were	trained	while	keeping	the	

parameters	of	the	backbone	frozen.	This	result	in	a	model	with	the	

best	validation	accuracy	of	0.6234.	Fig.	61	displays	the	confusion	

matrix	and	performance	metrics	of	testing	this	model	on	EMNIST	

dataset.	The	overall	accuracy	on	all	data	is	0.5891.	

Figure	60:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	5	
trained	on	head	layer	only	on	entire	EMNIST	dataset	

 
Figure	56:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	5	

trained	on	head	layer	only	on	entire	EMNIST	dataset	
 
Figure	61:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	6	

trained	on	head	layer	only	on	entire	EMNIST	dataset	
 
Figure	57:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	6	
trained	on	head	layer	only	on	entire	EMNIST	datasetFigure	60:	(a)	Confusion	Matrix	
and	(b)	Performance	Metrics	for	Model	Configuration	5	trained	on	head	layer	only	on	

entire	EMNIST	dataset	
 
Figure	56:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	5	

trained	on	head	layer	only	on	entire	EMNIST	dataset	
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(a)	

(b)	

	Figure	61:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	6	trained	on	head	layer	
only	on	entire	EMNIST	dataset	

 
Figure	57:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	6	trained	on	head	layer	

only	on	entire	EMNIST	dataset	
 
Figure	61:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	6	trained	on	head	layer	

only	on	entire	EMNIST	dataset	
 
Figure	57:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Model	Configuration	6	trained	on	head	layer	

only	on	entire	EMNIST	dataset	
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Based	on	the	results	received	after	training	all	6	model	configurations	and		

testing	each	one	on	the	entire	EMNIST	dataset,	the	accuracy	provided	by	each	model	

was	very	close	to	each	other.	Table	XXIII	showcases	the	results	of	the	merged	model	

of	task	5,	prior	to	training,	on	unseen	task	data.	Table	XXIV	showcases	the	results	of	

the	merged	model	of	task	5,	whose	last	layer	was	retrained,	on	unseen	data.	Table	

XXV	displays	the	percent	change	of	performance	metrics	between	non-retrained	and	

retrained	versions	of	task	5	merged	model	on	unseen	data.	In	this	example,	unseen	

task	data	was	defined	as	{3,7}	and	it’s	taken	from	the	QMNIST	dataset.		

	

Category	 Accuracy	 Precision	 Recall	 F1	Score	 TP	 FP	 TN	 FN	
3	 0.7408	 0.92109	 0.740	 0.821191	 3759	 322	 4881	 1315	

7	 0	 1.0	 0	 0	 1	 0	 5074	 5202	

	

	

	

	

	

	

Category	 Accuracy	 Precision	 Recall	 F1	Score	 TP	 FP	 TN	 FN	

3	 0.8638	 0.9941	 0.8638	 0.924391	 4383	 26	 5177	 691	

7	 0.8647	 0.9980	 0.8647	 0.926578	 4499	 9	 5065	 704	

TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 
 

TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 
 

 
TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 

 
 

TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 
 

 
TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 
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Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

3	 16.6002	 7.9259	 16.6002	 12.5672	
7	 inf	 -0.1996	 inf	 inf	
	

Table	XXVI	through	Table	XXVIII	provide	the	change	in	performance	metrics	

upon	retraining	for	categories	3	and	7	for	all	6	model	configurations.	In	a	real-world	

setting,	user	data	cannot	be	predefined	into	a	series	of	tasks	so	if	the	classifier	layer	of	

the	final	task	model	is	retrained	with	all	data	categories,	then	the	accuracy	of	

identifying	unseen	data	can	be	improved.	

	

Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

3	 40319.9987	 298.6193	 40319.9987	 22540.5114	
4	 623.0768	 33.81330	 623.0768	 339.2676	
	

	

Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

3	 67383.3324	 1328.3944	 67383.3324	 38010.3157	
4	 1658.5903	 44.0309	 1658.5903	 878.8898	
	

	

	

	

TABLE	XXV:	%	Change	in	Performance	Metrics	between	Non-retrained	and	Retrained	
(Task	5	Merged	Model)	 

 
 

TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 
 

 
TABLE	XXV:	%	Change	in	Performance	Metrics	between	Non-retrained	and	Retrained	

(Task	5	Merged	Model)	 
 

 
TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 

 

TABLE	XXVI:	Change	in	Performance	Metrics	Upon	Retraining	–	Model	Configuration	1 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 

TABLE	XXVII:	Change	in	Performance	Metrics	Upon	Retraining	–	Model	Configuration	2 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
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Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

3	 40519.9983	 298.9197	 40519.9983	 22610.2538	
4	 620.32967	 34.1471	 620.32967	 338.9265	

	

	 Similar	to	the	previous	experiment,	we	took	another	set	of	unseen	data	which	we	

defined	as	{4,	7,	9}	and	evaluated	how	each	model	configuration	worked	against	the	

merged	model	from	the	original	experiment.	Table	XXIX	showcases	the	results	of	the	

merged	model	of	task	5,	prior	to	training,	on	unseen	task	data.	Table	XXX	showcases	the	

results	of	the	merged	model	of	task	5,	whose	last	layer	was	retrained,	on	unseen	task	

data.	Table	XXXI	displays	the	percent	change	of	performance	metrics	between	non-

retrained	and	retrained	versions	of	task	5	merged	model	on	this	unseen	data.	

	

Category	 Accuracy	 Precision	 Recall	 F1	Score	 TP	 FP	 TN	 FN	
4	 0	 0	 0	 0	 0	 1	 10028	 4798	

7	 0.000192	 1.0	 0	 0.000384	 1	 0	 9624	 5202	

9	 0.003937	 0.3333	 0.003	 0.007782	 19	 38	 9963	 4807	

	

	

	

	

	

TABLE	XXIX:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 
 

TABLE	XXIX:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 

TABLE	XXVIII:	Change	in	Performance	Metrics	Upon	Retraining	–	Model	Configuration	3 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
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Category	 Accuracy	 Precision	 Recall	 F1	Score	 TP	 FP	 TN	 FN	
4	 0.81679	 0.8678	 0.817	 0.8415	 3919	 597	 14742	 879	

7	 0.8647	 0.9394	 0.865	 0.9005	 4499	 290	 9334	 704	

9	 0.789266	 0.8440	 0.789	 0.8157	 3809	 704	 9297	 1017	

	

	

Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

4	 Inf	 Inf	 Inf	 Inf	
7	 449800	 -6.0555	 449800	 234215.4230	
9	 19947.3683	 153.201	 19947.3683	 10381.9900	
	

Table	XXXII	through	Table	XXXIV	provide	the	change	in	performance	metrics	

upon	retraining	for	categories	4,	7	and	9	for	all	6	model	configurations.		

	

Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

4	 623.0768	 33.81330	 623.0768	 339.2676	
7	 Inf	 Inf	 Inf	 Inf	
9	 Inf	 Inf	 Inf	 Inf	
	

	

	

	

TABLE	XXX:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 
 

TABLE	XXX:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 
TABLE	XXXI:	%	Change	in	Performance	Metrics	between	Non-retrained	and	Retrained	

(Task	5	Merged	Model)	 
 

 
TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 

 
 
TABLE	XXXI:	%	Change	in	Performance	Metrics	between	Non-retrained	and	Retrained	

(Task	5	Merged	Model)	 
 

 
TABLE	XXIV:	Performance	Metrics	for	Merged	Model	of	Task	5	-	Retrained 

 

TABLE	XXXII:	Change	in	Performance	Metrics	Upon	Retraining	–	Model	Configuration	1 
 

 
TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 

 
 
TABLE	XXXII:	Change	in	Performance	Metrics	Upon	Retraining	–	Model	Configuration	1 

 
 

TABLE	XXIII:	Performance	Metrics	for	Merged	Model	of	Task	5	–	Non-	Retrained 
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Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

4	 1658.5903	 44.0309	 1658.5903	 878.8898	
7	 Inf	 Inf	 Inf	 Inf	
9	 Inf	 Inf	 Inf	 Inf	
	 	

	

Category	 %	Change	in	
Accuracy	

%	Change	in	
Precision	

%	Change	in	
Recall	

%	Change	in	
F1	Score	

4	 620.32967	 34.1471	 620.32967	 338.9265	
7	 Inf	 Inf	 Inf	 Inf	
9	 Inf	 Inf	 Inf	 Inf	
	

IX. CONCLUSION	AND	FUTURE	WORK	

This	research	project	focused	on	the	overarching	idea	of	privacy-preserving	

visual	recognition	by	closely	examining	federated	learning	frameworks,	particularly	the	

DUA	framework.	One	of	the	challenges	of	this	research	project	was	understanding	the	

DUA	framework	itself	due	to	the	different	components	it	encompassed.	Running	a	

thorough	investigation	of	the	DUA	framework,	as	part	of	the	preliminary	research,	led	

to	the	discovery	of	a	few	pitfalls	of	the	DUA	framework.	The	primary	pitfall	that	was	

found	was	this	framework	doesn’t	work	on	unseen	data.	As	a	brief	recap,	unseen	data	is	

defined	as	data	that	is	on	the	user	device	that	has	not	been	used	to	train	models	on	the	

server.	Our	research	focused	on	addressing	this	primary	pitfall	by	implementing	an	

experiment	that	involved	using	overlapped	datasets	and	developing	multiple	model	

TABLE	XXXIII:	Change	in	Performance	Metrics	Upon	Retraining	–	Model	Configuration	2 
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configurations	and	training	them	to	determine	which	one	performed	the	best	on	unseen	

data.		

Based	on	our	research,	we	found	that	nearly	all	6	newly	defined	model	

configurations	produced	similar	accuracy	values	on	the	entire	EMNIST	dataset,	which	

we	used	as	unseen	data.	Nonetheless,	model	configuration	2	provided	the	best	results	

among	all	the	model	configurations	because	taking	the	maximum	value	of	each	

category,	or	class,	ensures	that	equal	importance	is	given	to	all	classes.	For	example,	

even	though	the	accuracy	value	of	model	configuration	was	very	close	to	that	of	model	

configuration	2,	taking	the	average	value	of	each	class	could	sway	the	results	especially	

if	there	is	a	large	difference	between	the	two	values	of	each	class.	

A	direct	comparison	of	the	original	Numbers	experiment	and	the	experiment	that	

we	implemented	suggests	that	we	have	produced	a	large	overhead	since	the	original	

experiments	consisted	of	5	models	and	our	experiment	produced	10	models.	However,	

we	have	improved	the	accuracy	by	1%	on	unseen	data.	In	addition,	we	have	also	shown	

that	we	can	improve	the	performance	of	unseen	data	by	retraining	the	classifier	layer	of	

the	final	task	merged	model	on	all	data	categories.	

This	research	is	a	stepping	towards	adapting	DUA	to	other	computer	vision	tasks.	

The	future	work	of	this	research	involves	building	DUA	for	other	classification	tasks	

such	as	human	action	recognition	and	object	detection.		
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SUPPLEMENTARY	

The	tables	below	showcase	the	performance	metrics	of	the	unmerged	and	

merged	models	of	the	MIT	Indoor	Scenes	experiment	as	part	of	the	robustness	check	

that	was	done	using	a	custom	scenes	dataset.	The	process	of	how	the	evaluation	was	

performed	can	be	found	in	Section	X.	The	accuracy	values	for	each	task	evaluation	were	

0.5255,	0.5092,	0.5824	and	0.5303	for	all	unmerged	models,	respectively.	The	accuracy	

values	for	each	task	evaluation	for	all	merged	models	was	0.5053,	0.4915	and	0.4797,	

respectively.	

	

	 	

	

TABLE	SI:	Performance	Metrics	for	Task	1	Unmerged	Model 
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TABLE	S2:	Performance	Metrics	for	Task	2	Unmerged	Model 
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TABLE	S3:	Performance	Metrics	for	Task	3	Unmerged	Model 
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TABLE	S4:	Performance	Metrics	for	Task	4	Unmerged	Model 
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TABLE	S5:	Performance	Metrics	for	Task	2	Merged	Model 
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TABLE	S6:	Performance	Metrics	for	Task	3	Merged	Model 
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TABLE	S7:	Performance	Metrics	for	Task	4	Merged	Model 
 

 
Figure S1: (a) Confusion Matrix and Performance Metrics for Task 4 Merged Model on 

entire EMNIST datasetTABLE	S7:	Performance	Metrics	for	Task	4	Merged	Model 
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entire	EMNIST	dataset	
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(b)	Figure	S1:	(a)	Confusion	Matrix	and	Performance	Metrics	for	Task	4	Merged	Model	on	entire	EMNIST	dataset	
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Figure	S2:	(a)	Confusion	Matrix	and	Performance	Metrics	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	
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(a)	

(b)	

Figure	S2:	(a)	Confusion	Matrix	and	Performance	Metrics	for	Task	5	Merged	Model	on	entire	EMNIST	dataset	
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Figure	S3:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	6	Merged	Model	on	entire	EMNIST	
dataset	
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(a)	

(b)	

	Figure	S3:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	6	Merged	Model	on	entire	EMNIST	dataset	
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Figure	S4:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	7	Merged	Model	on	entire	EMNIST	dataset	
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datasetFigure	S3:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	6	Merged	Model	on	entire	EMNIST	
dataset	
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Figure	S4:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	7	Merged	Model	on	entire	EMNIST	dataset	
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Figure	S5:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	8	Merged	Model	on	entire	EMNIST	dataset	
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datasetFigure	S4:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	7	Merged	Model	on	entire	EMNIST	

dataset	
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(b)	

	Figure	S5:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	8	Merged	Model	on	entire	EMNIST	dataset	
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Figure	S6:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	9	Merged	Model	on	entire	EMNIST	dataset	
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datasetFigure	S5:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	8	Merged	Model	on	entire	EMNIST	

dataset	
 
Figure	S5:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	8	Merged	Model	on	entire	EMNIST	dataset	
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(a)	

(b)	

 
 
 

Figure	S6:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	9	Merged	Model	on	entire	EMNIST	dataset	
 
Figure	S6:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	9	Merged	Model	on	entire	EMNIST	dataset	
 

Figure	S7:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	10	Merged	Model	on	entire	EMNIST	
dataset	
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datasetFigure	S6:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	9	Merged	Model	on	entire	EMNIST	
dataset	

 
Figure	S6:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	9	Merged	Model	on	entire	EMNIST	dataset	
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(a) 
 

 
(b) 

Figure	S7:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	10	Merged	Model	on	entire	EMNIST	dataset	
 
Figure	S7:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	10	Merged	Model	on	entire	EMNIST	dataset	
 
Figure	S7:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	10	Merged	Model	on	entire	EMNIST	dataset	
 
Figure	S7:	(a)	Confusion	Matrix	and	(b)	Performance	Metrics	for	Task	10	Merged	Model	on	entire	EMNIST	dataset	
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