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Abstract – In today’s fast-paced and technology driven world, 
Internet commerce has become a de-facto standard. Nowadays 
there are a lot of options available for a customer over the Internet. 
In order to be a successful seller online, the provider should 
provide great customer experience.  

Shopping experience via the Internet requires applications to 
run with agility and performance. Moreover, the applications 
should be consistently performing with 100% uptime. Any 
downtime can cause heavy loss as purchases happen at a time that 
is convenient to the customer 24 hours 7 days a week. 

To ensure that the applications that support business processes 
run continuously, constant monitoring of the environment in 
which the application is running needs to be monitored. This 
monitoring has to be proactive and should be able to predict 
chances of failures and bottlenecks that may affect the business 
process, hence predictive monitoring. 

Therefore, in this paper, we are going to be examining the 
importance of predictive analytics on data center monitoring by 
discussing statistical-based and machine learning models that can 
be used to learn from system performance metric data. In 
addition, we are going to look into how we can use Elasticsearch, 
Beats, and Kibana to collect, analyze, and display data. 
 
Index Terms: Data Center Monitoring, Predictive Analytics, Logistic 
Regression, Log File, System Performance Metrics 

I. INTRODUCTION 
The evolution of the Internet has paved the way for 

numerous businesses of varied types and sizes to be a success 
in today’s fast-paced and technology-driven world. Even 
though the Internet, originally named Arpanet, started off as a 
research project funded by the U.S. military [1], it “has 
expanded beyond the United States to every corner of the 
globe” [1], giving consumers access to a wide variety of 
information right at their fingertips. 

In addition, the Internet also provided and continues to be a 
platform for many businesses to conduct their business 
processes online in order to make profit. This Internet facility 
is commonly known as ecommerce. According to an article 
provided on the Salesforce website, ecommerce, also known 
as electronic commerce, “refers to the process of conducting 
transactions through the Internet” [2]. In order to utilize this 
facility, businesses develop ecommerce applications that 
support their business processes. Automation of these business 
processes and steps are enabled through multiple technologies. 
These technologies run on either privately owned data centers 
or on cloud data centers. 

 
 

Nowadays, with easy access to the Internet and most 
businesses selling products and services online, people prefer 
shopping online rather than take the time to go to a store. For 
example, Black Friday and Cyber Monday are the two most 
popular days in the United States where people do an 
excessive amount of shopping to prepare for the holiday 
season. In fact, “consumers spent a total of $12.8 billion 
online in the U.S. during the five-day period from 
Thanksgiving through Cyber Monday in 2016” [3].  

In order to support such high online traffic, businesses must 
be able to keep their ecommerce application continuously 
running by proactively monitoring the data center in which 
their application is deployed in. This is an important and 
essential task for any business that doesn’t want to lose money 
and instead wants to ensure that the technologies used to build 
an application are scalable and resilient.  In fact, according to 
a white paper written by Emerson, “the average cost of data 
center downtime was approximately $5,600 per minute” [4] 
based on a study conducted in 2011. Network failure, security, 
power failure, and lack of scalability [5] are the few issues that 
can arise in the data center and thus cause an application to 
stop working costing businesses hundreds of thousands of 
dollars. 
 The paper is structured as follows. Section II provides 
background information on the importance of data center 
monitoring and sets the stage for the rest of the paper. Section 
III then provides a description of my project and relevant 
background information associated with it. Section IV dives 
deeper into the implementation details of the project. 
Subsequently, Section V provides the results of the 
implementation. Lastly, Section VI wraps up my project and I 
also discuss the future work that could be implemented by 
using my project as its starting foundation.   

II. BACKGROUND INFORMATION 

A. Setting the Stage: Scenario 
Imagine yourself as an entrepreneur and you have an online 

business where you are selling items to customers. Irrespective 
of the items that you are selling, you have developed an 
ecommerce application for your business and this application 
provides certain facilities to ensure great customer experience. 
As illustrated in Figure 1, your application provides certain  
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facilities such as allowing a customer to search for a product, 
add the product to a shopping cart, make a payment, and 
finally place an order. 

Now, assume that you have installed your ecommerce 
application on a set of nodes in a large data center. Within 
these set of nodes, you might also have other applications 
running and other applications may be coming in ready to 
execute. In order for your application to run seamlessly, it 
requires a certain amount of compute and storage. There is a 
high chance that your application will not require 100% of the 
compute and storage resources all the time which is why the 
computers’ resources are being shared across many 
applications. So, over a period of time, you can collect system 
log information in order to analyze the patterns of compute 
and storage usage. For example, during the holiday season, 
your application may get a large number of hits so during this 
time your application requires a high amount of compute and 
storage power. During the off-season, your application may 
get hits, but may not require as much compute and storage 
power than during the peak season. Then, the question that 
arises is that, during these hits, how will you be able to ensure 
that these resources will be available all the time. This is the 
problem that I am trying to address with my project. 

For this purpose, we need to proactively monitor data center 
resources and not after the fact. For instance, suppose your 
application is being used by hundreds of customers and in a 
split-second your application stops working. Now that you’ve 
realized your application has stopped working, you go to 
address the problem, but that is after the fact and in that time, 
you have already lost customers and money. However, if you 
had already known that this was going to happen in the near 
future, you could have proactively performed some 
maintenance to prevent this issue from occurring.  

B. Related Work 
My project’s foundation was inspired by my internship 

experience at a large corporation and built after looking into 
different research papers, journal articles, and products on data 
center monitoring and log file analysis. AppDynamics is one  

 
 
product that exists in the market today [6]. AppDynamics is a 
leading Application Performance Management (APM) tool 
that monitors your application infrastructure and provides 
code level visibility. As showcased in Figure 2, a software 
called an Agent is installed on Application Servers and is 
responsible for collecting system performance metrics. These 
metrics are then sent to a Controller server where data is 
processed. An end user, such as a data analyst, can view the 
data through a web interface to examine what’s going on 
behind the scenes. As a brief summary, this product “learns”  
application behavior and automatically sets baselines and 
alerts when the deviation from the baseline is an anomaly [6]. 

 

III. PROJECT OVERVIEW 

A. Problem Statement 
As mentioned in the previous section, the problem that I am 

trying to address with my project is business process  

Facility Facility 

Facility 

Search for a 
product 

Place the item in 
shopping cart Make a payment 

Place an order 

Facility 

Figure 1: Your ecommerce application provides certain facilities to ensure great customer experience 

Figure 2: AppDynamics APM tool 
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interruption caused by inadequate management of compute, 
storage, and network resources in a data center. This problem 
affects businesses that are dependent on online applications 
for conducting their business processes. It’s important to 
address this problem because ensuring scalability and  
resilience of applications provides great experience for the 
customer and avoids loss of revenue for the business.  

B. Proposed Solution 
We will be addressing the problem mentioned before by 

proactively monitoring data centers to ensure timely 
alerts/automated actions to scale compute, storage, and 
network resources in a data center. For this purpose, as 
depicted in Figure 3, we need to collect and analyze system 
and database log data so that we can learn from available 
memory, CPU, disk space, and network traffic in order to 
predict what kind of situations can arise based on the usage of 
compute and storage resources so that appropriate 
maintenance (e.g. add more virtual machines if it’s in a cloud 
environment) can be done before the application stops 
running.  

After the system data is collected with the help of two Beats 
modules (Filebeat and Metricbeat), which are “lightweight 
data shippers” that are used to capture operational data, this 
data is stored in Elasticsearch, which is an “open source search 
and analytics engine for all types of data” [7]. From 
Elasticsearch, the necessary data is extracted with the help of 
APIs in order to prepare training and testing datasets for the 
machine learning models. To find data center resources, such 
as compute and storage, and their effects on resource 
contention that may lead to non-performance of the 
application, a classifier model was deemed appropriate. The 
two machine learning models that I decided to use was a 
standard logistic regression model and a multinomial logistic 
regression model. 

 
 

 
 
Lastly, predictions are captured on a visually appealing 

dashboard with the help of Kibana so that timely 
alerts/automated actions can take place.  

C. Machine Learning Models 
In the classification-based methodology, a dataset, known 

specifically as a training dataset, is used to form classification 
models (classifiers). Then, using these classification models,  
test instances are categorized within these classification 
models. The key idea in this methodology is that a classifier 
can be learnt from a given data set and easily distinguish 
between two or more classes. Standard and multinomial 
logistic regression models are the two classification and 
statistical based methods [8,9] that I used for my project. 

 
i. Standard Logistic Regression Model: A standard 

logistic regression model is a statistical model that 
is used within the machine learning domain in 
order to solve binary classification problems. This 
model predicts the probability of an occurrence 
utilizing a logit function, which is defined as f(x) = 
1/1+e-x. Maximum Likelihood Estimation (MLE) 
is used for estimating the parameters of a model 
which results in the following logistic regression 
equation: y = e(b0+b1*x)/(1 + eb0 + b1*x), where y is the 
predicted output, b0 is the bias, b1 is the 
coefficient for a single input value x. If more than 
one input value x is being used, logistic regression 
model will estimate a coefficient for each input.   
 

ii. Multinomial Logistic Regression Model: A 
multinomial logistic regression model is similar to 
a standard logistic regression model, but the latter 
model is utilized in situations where the dependent 
variable is nominal with more than two levels. It is 
used to explain the relationship between one or 

Figure 3: Architecture Diagram of Proposed Solution 
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more independent variables and one multi-class 
dependent variable. 

IV. IMPLEMENTATION 
To further understand the full capacity and potential of 

predictive analytics on data center monitoring, I decided to 
implement two of the statistical-based methods discussed 
in the previous section. However, prior to training and 
testing these statistical-based methods, I had to install and 
learn how to use Elasticsearch, Beats, and Kibana in order 
to collect, extract, and display the required system 
information. Please note a larger image size of each image 
in this section can be found in the Appendix. 

A. Data Collection: Elasticsearch, Kibana, Beats 
After installing Elasticsearch, Kibana, Filebeat and 

Metricbeat from the Elastic website, I started the process of 
collecting my local system performance metric data. The 
first step was to start Elasticsearch by executing the 
command “./bin/elasticsearch” from the appropriate 
directory in terminal, as showcased in Figure 4a. Figure 4b 
represents the output seen after executing this command. In 
order to ensure that Elasticsearch was running, I navigated 
to https://localhost:9200 to see if the message in Figure 4c 
appears. 

 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

The next step was to start Kibana by executing a similar 
command to the one used to start Elasticsearch, 
“./bin/kibana” from the appropriate directory in a new 
terminal, as showcased in Figure 5a. Figure 5b represents the 
output seen after executing this command. In order to ensure 
that Kibana was running and a connection was established 
with Elasticsearch, I navigated to https://localhost:5601 to see 
if I got a similar output to that of Figure 5c. 

 
 

Figure 4a: Starting Elasticsearch 

Figure 4b: Output while starting Elasticsearch 

Figure 4c: Verification that Elasticsearch is running 

Figure 5a: Starting Kibana 

Figure 5b: Output while starting Kibana 
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As depicted in Figure 3, the Metricbeat module was used to 

collect system performance metric data from my local system. 
Similar to Elasticsearch and Kibana, the command 
“./metricbeat -e” was executed from the appropriate directory 
in a new terminal, as showcased in Figure 6a. Figure 6b 
represents the output seen after executing this command. Once 
a connection to Elasticsearch gets established, an inverted 
index is created and stores all of the system data based on the 
fields defined in Metricbeat module [7]. Figure 6c represents 
all the available and newly created inverted indices that are 
present. Please note that the inverted index titled 
“metricbeat-7.4.2- 
2019.11.17-000001” is the index that contains my local 
system performance metric data. 

 
 

 
In addition to the Metricbeat module, the Filebeat module 

was used to collect log data from MongoDB which was 
utilized in an ecommerce application. Since the focus of this 
project was not to create an ecommerce application, I used an 
application that was developed using the MERN stack by 
Rizwan Khan (https://github/com/Rizwan17/mystore-front-
end and https://github.com/Rizwan17/mystore-back-end ) to 
collect MongoDB log data. In order to be able to collect 
database log data, the MongoDB module specified within 
Filebeat had to be enabled as showcased in Figure 7a.  
The command “./filebeat -c filebeat.yaml -e” was executed 
from the appropriate directory in a new terminal. Figure 7b 
represents the output seen after executing this command. Once 
a connection to Elasticsearch gets established, an inverted 
index is created and stores all of MongoDB log data based on 
the fields defined in the Filebeat module [7]. The title of the 
inverted index that stores the MongoDB log data is “filebeat-
7.4.2-2019.11.16-000001” as can be seen in Figure 6c. 

 

B. Implementation of Machine Learning Models 
i. Standard Logistic Regression Model: The 

standard logistic regression model was trained on 
a dataset that consisted of performance metrics 
of 1,750 virtual machines from GWA-T-12 
Bitbrains distributed data center [10]. Please 
refer to Table 1 to see the format of this data. 

 
Using Python, pandas, numpy, seaborn, and 
functions from the sklearn library, I trained two 

Figure 5c: Verification that Kibana is running 

Figure 6a: Starting Metricbeat 

Figure 6c: Inverted indices 

Figure 7a: Configuring MongoDB module within Filebeat 

Figure 7b: Output while starting filebeat 

Figure 6b: Output while starting Metricbeat 
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standard logistic regression models, one for CPU 
usage and another one for Memory usage. After 
training these two models, I tested them using 
performance metrics from my local system to 
exhibit and simulate how predictive analytics 
would work in real-time. Table 2 displays the 
format of the data captured by MetricBeat of my 
local system. The code can be found on my 
GitHub page and is titled as “CPU Logistic 
Regression Model” and “Memory Logistic 
Regression Model” for the CPU model and 
memory model, respectively. 

 
Name Description 
Timestamp number of milliseconds 

since 1970-01-01 
CPU cores Number of virtual CPU 

cores provisioned 
CPU capacity The capacity of the CPUs 

in terms of MHz 
CPU usage In terms of MHz 
CPU usage In terms of percentage 
Memory provisioned Capacity of the memory in 

the VM in terms of KB 
Memory usage Memory that is actively 

used in terms of KB 
Disk read throughput In terms of KB/s 
Disk write throughput In terms of KB/S 
Network received 
throughput 

In terms of KB/s 

Network transmitted 
throughput 

In terms of KB/s 

 
 

Name Description 
Timestamp YYYY-MM-DD 
system.cpu.cores Number of CPU cores 

provisioned 
system.cpu.user.pct In terms of percentage 
system.memory.total In terms of bytes 
system.memory.actual.free In terms of bytes 
system.diskio.read.count Total number of reads 

completed successfully 
system.diskio.write.count Total number of writes 

completed successfully 
 
 

ii. Multinomial Logistic Regression Model: The 
multinomial logistic regression model was 
trained on a dataset that consisted of the 
performance metrics of a MongoDB database 
from a staging environment and data collected 
from an ecommerce application that I used.  
 
Using Python, pandas, numpy, seaborn, and 
functions from the sklearn library, I trained a 
single multinomial logistic regression model. 
This model was chosen because the target 
variable can be one of 3 classes (tech stack is 

stressed, tech stack is about to be stressed, tech 
stack not stressed) and severity level of the 
mongo log has 4 labels. I split this dataset into 
75% training dataset and 25% testing dataset. 
Table 3 showcases the format for this data. The 
code can be found on my GitHub page and is 
titled as “Multinomial Logistic Regression 
Model to Determine Stress Level of Tech Stack.” 

 
Name Description 
Timestamp YYYY-MM-

DD:HH:mm:ss 
Severity 4 types (F-Fatal, E-Error, 

W-Warning, I-
Informational) 

Component E.g. NETWORK, 
ACCESS 

Context E.g. initandlisten 
Message E.g. waiting for 

connections on port 2701. 
 

V. RESULTS 

A. Memory Model 
The memory model was trained on 500 data records from 
GWA-T-12 Bitbrains and tested on 100 data records from 
my local system log. As showcased in the confusion matrix 
below, in Figure 8, the model was only able to achieve 28% 
accuracy. 
 

 
 
 

B. CPU Model 
The CPU model was trained on 500 data records from 
GWA-T-12 Bitbrains and tested on 100 data records from 
my local system log. As showcased in the confusion matrix 
below, in Figure 9, the model was able to achieve 98% 
accuracy. 
 

Table 1: GWA-T-12 Bitbrains Dataset Format 

Table 2: Local System Metric Dataset Format 

Table 3: MongoDB Log Dataset Format 

Figure 8: Memory Model Confusion Matrix 
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C. MongoDB Model 
The MongoDB model was trained on 75% of 500 records 
and tested on the remaining 25%. As showcased in the 
confusion matrix in Figure 10, it was only able to achieve 
69% accuracy. 

 
 

 

D. Real-time Data Visualization 
Please refer to Figure 11 in the Appendix to see a snapshot 
of the real-time data visualization of my local system. 

VI. CONCLUSION AND FUTURE WORK 
Through this project, I wanted to address the issue of 

business process interruption that are caused by inadequate 
management of compute, storage, and network resources in a 
data center. I explained the importance of the topic and 
provided a detailed description of how I implemented my 
solution.  

It is known that in the real-world, a system that is 100% 
perfect and complete does not exist. There is also something 
more to discover and work on. Similarly, with my project I 

have listed out a couple of points that I would consider as a 
future enhancement and they are as follows: 

• Explore other machine learning classification 
models such as Support Vector Machine and 
Random Forest and see how they perform 

• Enhance data visualization by inserting business 
process visuals 

• Create a mechanism to send alert via email or text 
message 

• Research data preprocessing methods to preprocess 
data prior to using the data as a training and testing 
dataset 

REFERENCES 
[1] Carolyn Duffy Marshall, “The Evolution of the Internet”, Network World, 

9, February 2009 
[2] Salesforce, “Overview: What is ecommerce?”, 

https:/salesforce.com/products/commerce-cloud/resources/what-is-
ecommerce/  

[3] Mark Gaydos, “Is Your Data Center Ready for Black Friday and Cyber 
Monday Onslaughts”, Industry Perspectives, 17, November 2017 

[4] A White Paper from the Experts in Business-Crtical Continuity 
(Emerson), “Understanding the Cost of Data Center Downtime: An 
Analysis of the Financial Impact on Infrastructure Vulnerability”, White 
Paper 

[5] Phillipa Gill, Navendu Jain, Nachiappan Nagappan, “Understanding 
Network Failures in Data Centers: Measurement, Analysis, and 
Implications”, Dept. of Computer Science at University of Toronto, 
Microsoft 

[6] AppDynamics Business White Paper, “A Modern Approach to 
Monitoring Performance in Production”, 2014 

[7] Elasticsearch, https://elastic.co 
[8] Jeffrey R. Wilson, Kent A. Lorenz “Standard Binary Logistic Regression 

Model”, Part of the ICSA Book Series in Statistics book series (ICSABSS, 
volume 9) 

[9] Dr. Jon Starkweather, Dr. Amanda Kay Moske, “Multinomial Logistic 
Regression," UNT 

[10] https://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains 
 
 
 
 
 
: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: CPU Model Confusion Matrix 

Figure 10: MongoDB Model Confusion Matrix 
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Figure 4a 

Figure 4b 
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Figure 4c 
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Figure 5b 

Figure 5c 
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Figure 6a 
 

Figure 6b 
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